文章摘要
基于高斯过程回归的橡胶玻璃化温度的预测研究
Study on Prediction of Glass Transition Temperature of Rubber Based on Gaussian Process Regression
投稿时间:2021-02-26  修订日期:2021-02-26
DOI:10.12136/j.issn.1000-890X.2022.11.0826
中文关键词: 高斯过程回归  反向传播神经网络  玻璃化温度  溶聚丁苯橡胶
英文关键词: Gaussian process regression  BP neural network  glass transition temperature  SSBR
基金项目:国家自然科学基金资助项目(61873022)
作者单位E-mail
陈祝丹 北京化工大学 lidz@mail.buct.edu.cn 
李大字* 北京化工大学 lidz@mail.buct.edu.cn 
刘 军 北京化工大学  
高 科 北京化工大学  
摘要点击次数: 1032
全文下载次数: 922
中文摘要:
      以实例数据为样本,利用高斯过程回归分析苯乙烯和丁二烯含量对溶聚丁苯橡胶(SSBR)玻璃化温度(Tg)的影响,从而预测SSBR的Tg。结果表明:高斯过程回归建立的SSBR的Tg预测模型可靠和有效;与反向传播神经网络模型相比,高斯过程回归模型解决小样本问题具有优越性,可为更多复杂耗时的试验数据预测提供有效解决方案,对一定范围内的苯乙烯和丁二烯含量对SSBR的Tg的影响进行定性和定量分析。
英文摘要:
      Taking the example data as the sample,the influence of styrene and butadiene contents on the glass transition temperature (Tg) of solution-polymerized styrene-butadiene rubber (SSBR) was analyzed by using the Gaussian process regression,so then pIn this study,the influence of styrene and butadiene contents on the glass transition temperature(Tg) of solution-polymerized styrene-butadiene rubber(SSBR) was analyzed by using Gaussian process regression,and the method to predict the Tg of SSBR was established. The results showed that,the Tg prediction model of SSBR established by Gaussian process regression was feasible and effective. Compared with the back propagation(BP) neural network model,the Gaussian process regression model had advantages in solving the small sample problem,and could provide an effective solution for more complex and timeconsuming test data prediction. It was effective in the qualitative and quantitative analysis of the influence of styrene and butadiene content in a certain range on the Tg of SSBR.
Author NameAffiliationE-mail
CHEN Zhudan Beijing University of Chemical Technology lidz@mail.buct.edu.cn 
LI Dazi Beijing University of Chemical Technology lidz@mail.buct.edu.cn 
Liu Jun Beijing University of Chemical Technology  
GAO Ke Beijing University of Chemical Technology  
查看全文   查看/发表评论  下载PDF阅读器
关闭