基于贝叶斯正则化BP神经网络的挤出温度预测模型 |
Extruding Temperature Prediction Model Based on Back Propagation Artificial Neural Network through Bayesian-regularization |
|
DOI: |
中文关键词: 轮胎 胎面挤出 温度预测模型 人工智能 BP神经网络 贝叶斯正则化 |
英文关键词: tire tread extrusion temperature prediction model artificial intelligence back propagation artificial neural network Bayesian-regularization |
基金项目: |
|
摘要点击次数: 923 |
全文下载次数: 493 |
中文摘要: |
简要介绍贝叶斯正则化BP神经网络原理,并应用基于贝叶斯正则化训练方法的BP神经网络建立挤出温度预测模型。预测与试验结果对比表明,经过训练后的网络模型基本获取了实际挤出温度的函数形式,网络输出值与样本对应的挤出温度实际值几乎完全重合,表明该方法能达到较好的预测精度,同时具有使用简洁、快速等优点。 |
英文摘要: |
The principle of back propagation(BP) artificial neural network based on Bayesian-regularization was briefly introduced,and the prediction model of extrusion temperature was established by using the BP artificial neural network.The comparison of prediction with test results showed that the trained network model correctively predicted the actual extrusion temperature function.This simulation method was very effective and simple. |
|
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |