有限元分析中橡胶应变能函数的若干形式 |
Some Forms of Strain Energy Function for Rubber with Finite Element Analysis |
|
DOI: |
中文关键词: 橡胶 有限元分析 应变能函数 |
英文关键词: rubber finite element analysis strain energy function |
基金项目: |
|
摘要点击次数: 2251 |
全文下载次数: 1641 |
中文摘要: |
介绍在有限元分析中描述橡胶力学性能常用的应变能函数。以应变不变量表示的应变能函数,较常用的有Rivlin模型、neo-Hookean模型、Mooney-Rivlin模型、Gent-Thomas模型、Nicholson-Nelson模型等;以伸张率表示的应变能函数常用的有Valanis-Landel模型、Peng-Landel模型和Tobisch模型、Ogden模型等。这些模型各有其特点和适用性。 |
英文摘要: |
The strain energy functions to characterize the mechanical properties of rubber with FEA are described.The common strain energy functions expressed as strain invariables include Rivlin model,neo-Hookean model,Mooney-Rivlin model,Gent-Thomas model and Nicholson-Nelson model etc.;the common strain energy functions expressed as elongations include Valanis-Landel Model,Peng-Landel model,Tobisch model and Ogden model etc..The models have different characteristics and suitable applications. |
|
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |