声学设备用橡胶透声壳体的研制

赵晓钢

(洛阳双瑞橡塑科技有限公司,河南 洛阳 471003)

摘要:以氯丁橡胶/丁腈橡胶并用胶为主体,通过配方优化设计制备耐硅油、耐海水,力学性能和声学 性能满足要求的橡胶透声壳体材料;根据产品结构特点设计合理的硫化模具,采用该模具,胶料在120 ℃ 下装模,逐步加压使胶料充满模腔,升温至150°C硫化45 min,采用充气方式脱模,制得的橡胶透声壳体满

关键词:橡胶透声壳体:耐硅油性能:耐海水性能:声压透射系数

中图分类号:TQ336.8

文章编号:2095-5448(2023)11-0551-03

文献标志码:A

DOI: 10. 12137/j. issn. 2095-5448. 2023. 11. 0551

橡胶透声壳体(结构见图1)作为某型声学 设备的包覆层使用时,其内部充有硅油(牌号为 G07),外部完全浸入海水中,使用温度为-20~70 °C, 水压为1~3 MPa, 在频率为0.5~5.0 kHz 时,要求橡胶透声壳体的平均声压透射系数不小 于0.90。

图1 橡胶透声壳体结构

声波入射到理想透声材料的透声层上时能 够无反射、无损耗地通过,这要求透声材料的特 性阻抗与水匹配,衰减常数尽可能小[1]。氯丁橡 胶(CR)具有水密性和透声性能好的特点,是一种 常见且重要的透声橡胶[2-3],但加工性能差。丁腈 橡胶(NBR)具有良好的耐低温、耐极性油和加工

作者简介: 赵晓钢(1986--), 男, 河南新密人, 洛阳双瑞橡塑科 技有限公司工程师,学士,主要从事阻尼声学橡胶制品的研究。

E-mail: 978832102@qq. com

性能。

CR与NBR具有良好的相容性,可以任意比例 混合。本工作通过配方设计研制满足性能要求的 CR/NBR并用胶,依据产品结构及硫化设备设计合 理的硫化模具和成型工艺,生产满足技术要求的 橡胶诱声壳体。

1 实验

1.1 原材料

CR, 牌号为2322, 山西霍家长化合成橡胶有 限公司产品;NBR,牌号为3345,中国石油兰州石 化公司产品;天然气槽法炭黑、气相法白炭黑、氧 化锌、氧化镁、硬脂酸、防老剂RD、硫黄和促进剂 CBS,国产市售品。

1.2 主要设备和仪器

XK-250型开炼机,广东利拿实业有限公司 产品:UR-2010型硫化仪,优肯科技股份有限公司 产品:XLB-D(Q)500型平板硫化机,湖州东方机 械有限公司产品; CMT4304型电子万能拉力机, 深圳新三思科技股份有限公司产品:MFT-120型 水声中频管,中国船舶重工集团公司第702研究所 产品。

1.3 试样制备

将CR和NBR在开炼机上薄通塑炼后,依次加

橡 段 科 核 生产技术 2023 年第 21 卷

入小料、炭黑和白炭黑、硫黄和促进剂,混炼均匀 后下片。

混炼胶停放24 h后在开炼机上返炼,下片,使用试片模具制备物理性能测试试样,使用特制模具制备声压诱射系数测试试样。

1.4 性能测试

硫化特性按GB/T 16584—1996测试;硬度按GB/T 531.1—2008测试;拉伸强度和拉断伸长率按GB/T 528—2009测试;撕裂强度按GB/T 529—2008测试;耐低温性能按GB 1146.2—1996测试;耐海水、耐硅油性能按GB/T 1690—2010测试;脆性温度按GB/T 1682—2014测试;耐热空气老化性能按GB/T 3512—2014测试;声压透射系数按GB/T 14369—2011测试。

2 结果与讨论

2.1 配方设计

根据声学设备的实际使用工况,要求与其装配的橡胶透声壳体的材料具有优良的耐海水、耐硅油性能,还要有良好的抗压、抗撕裂性能及较大的拉断伸长率。同时由于橡胶透声壳体对厚度均匀性要求较高,要求胶料在硫化成型过程中具有良好的流动性,即具有良好的可塑性。

设计胶料配方时,以CR和NBR为主体,加入 天然气槽法炭黑以提高胶料的拉伸性能,加入气 相法白炭黑以提高胶料的撕裂强度。经过大量试 验,最终确定CR/NBR并用胶的配方为:CR 70, NBR 30,天然气槽法炭黑 20,气相法白炭黑 20,氧化锌 3,氧化镁 2,硬脂酸 1,防老剂RD 5,硫黄和促进剂CBS 12.5。

2.2 胶料性能

2.2.1 硫化特性

CR/NBR并用胶的硫化特性见表1。

为保证橡胶透声壳体与声学设备的装配性,对橡胶透声壳体筒壁厚度的精度要求较高,这需要胶料硫化时在模腔内充分流动,硫化前期不发生焦烧,确保胶料的加工安全性。从表1可以看出,与在150℃下硫化相比,CR/NBR并用胶在120℃下硫化焦烧时间长,据此设计并用胶在120℃下装模,进行产品定型,然后升温到150℃硫化。

2.2.2 物理性能

CR/NBR并用胶的物理性能见表2。

表1 CR/NBR并用胶的硫化特性

项 目	硫化温度/℃		
	120	150	
$\overline{F_{\rm L}/\left({\rm dN} \bullet {\rm m}\right)}$	1.22	2.79	
$F_{\text{max}}/\left(\text{dN} \cdot \text{m}\right)$	7.87	13.82	
t_{10}/\min	8.58	1.57	
t_{30}/\min	36. 22	4.85	
t_{90}/\min	43.40	30.08	

表2 CR/NBR并用胶的物理性能

项 目	实测值	技术指标
邵尔A型硬度/度	70	70±5
拉伸强度/MPa	19.6	≥12
拉断伸长率/%	644	≥400
撕裂强度(直角)/(kN·m ⁻¹)	52	≥30
脆性温度/℃	-33	≤-30
-20 ℃×72 h低温试验后		
拉伸强度/MPa	18.6	≥10
拉断伸长率/%	512	≥180
100 ℃×72 h热空气老化后		
拉伸强度/MPa	17.9	≥10
拉断伸长率/%	462	≥180
23 ℃×28 d硅油浸泡后		
质量变化率/%	0.72	≤3
体积变化率/%	0.45	≤3
23 ℃×28 d海水浸泡后		
质量变化率/%	0.64	€3
体积变化率/%	0.58	€3

从表2可以看出,CR/NBR并用胶的各项物理性能均符合技术指标要求。

2.2.3 声学性能

将CR/NBR并用胶裁剪成 σ 118 mm×10 mm 的圆饼状试样,在 σ 120 mm脉冲管中测试胶料的声压透射系数,测试结果见表3。

从表3可以看出,CR/NBR并用胶在压力为

表3 CR/NBR并用胶的声压透射系数

项 目 -	压力/MPa		
	1	2	3
频率/kHz			
0.5	0.96	0.99	1.00
1.0	1.00	0.99	0.99
1.5	0.95	0.95	0.96
2.0	0.96	0.98	0.99
2.5	0.92	0.96	0.97
3.0	0.94	0.93	0.98
3.5	0.97	0.89	0.95
4.0	0.93	0.89	0.93
4. 5	0.88	0.83	0.94
5.0	0.86	0.85	0.83
平均值	0.94	0.93	0.95

第11期 生产技术 橡胶科技

1~3 MPa、频率为0.5~5.0 kHz条件下的平均声压透射系数均大于0.90,满足橡胶透声壳体材料的声学性能要求。

2.3 模具设计

本工作设计的橡胶透声壳体硫化模具结构见图2,为保证壳体厚度的均匀性,在模具上设计3个均匀排布的定位销,以防止偏心,在上模设计气嘴,采用充气方式进行脱模。

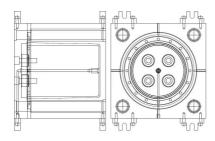


图2 橡胶透声壳体硫化模具结构示意

2.4 成型工艺

橡胶透声壳体采用模压方式硫化,成品高度较高,胶料流动距离大,若装模温度高,胶料易在未完全充满模腔时硫化,导致成品报废。因此胶料在120℃下装模,将胶片均匀铺在下模底部,为保证成品尺寸需严控装胶量,避免装胶量过大造成成品厚度偏大、筒沿偏厚现象,然后合模逐步加压放气,使胶料充满模腔的同时顺利排气,随后升温至150℃硫化45 min,脱模时通入压缩空气,成品自动脱落。橡胶透声壳体成品(见图3)表面光滑平整,无气泡,厚度均匀,满足使用要求。

图3 橡胶透声壳体成品

3 结论

- (1)以CR/NBR并用胶为主体,通过配方优化设计制备了耐硅油、耐海水,且物理性能和声学性能满足要求的胶料。
- (2)根据产品结构特点设计合理的橡胶透声 壳体硫化模具,采用该模具,胶料在120℃下装模, 逐步加压使胶料充满模腔,升温至150℃硫化45 min,采用充气方式脱模,制得的橡胶透声壳体表 面光滑平整,无气泡,厚度均匀,满足使用要求。

参考文献:

- [1] QI X, ZHANG J C, ZHANG L Q, et al. Bio-based self-healing eucommia ulmoides ester elastomer with damping and oil resistance[J]. Journal of Materials Science, 2020, 55 (11):4940-4951.
- [2] 沃斯特罗克努托夫 Ë Γ . 生胶和混炼胶的加工[M]. 周彦豪, 译. 北京: 化学工业出版社, 1985: 25-26.
- [3] 刘钦阳,张嘉嘉,刘国鑫,等. 橡胶材料在水声领域的应用进展[J]. 橡胶工业,2023,70(2):148-159.

收稿日期:2023-08-14

Development of Rubber Sound Transmission Shell for an Acoustic Equipment

ZHAO Xiaogang

(Luoyang Sunrui Rubber & Plastic Science and Technology Co., Ltd, Luoyang 471003, China)

Abstract: Using chloroprene rubber/nitrile rubber composite as the main body, a rubber sound transmission shell material that was resistant to silicone oil and seawater, and met the requirements for mechanical and acoustic properties was prepared through formula optimization. A reasonable vulcanization mold was designed based on the structural characteristics of the product. Using this mold, the rubber material was loaded into the mold at 120 $^{\circ}$ C, then gradually pressurized to fill the mold cavity, and heated to 150 $^{\circ}$ C for vulcanization for 45 min, demolded using inflatable method. The resulting rubber sound transmission shell met the using requirements.

Key words: rubber sound transmission shell; silicone oil resistance; seawater resistance; sound pressure transmission coefficient