研究与应用

活性纳米碳酸钙在全钢子午线轮胎 胎侧胶中的应用

李京辉,史光辉

(青岛光明轮胎有限公司,山东 青岛 266724)

摘要:试验研究活性纳米碳酸钙在全钢子午线轮胎胎侧胶中的应用。结果表明,在全钢子午线轮胎胎侧胶中添加 10 份活性纳米碳酸钙,胶料的硫化速度加快,硫化胶的硬度、拉斯伸长率略有增大,拉伸强度、定伸应力相当,胶料生产成本降低,具有一定的经济效益。

关键词:活性纳米碳酸钙;全锅子午线轮胎;胎侧胶

作为一种功能性补强填充材料,纳米碳酸钙由于粒子超细化,其晶体结构和表面电子结构发生变化,生产了普通碳酸钙所不具有的界面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,从而具有一系列优良的理化性能。而用活性剂改性的活性纳米碳酸钙活性进一步提高,分散性得到良好改善,同时价格远低于炭黑。本工作探讨活性纳米碳酸钙在全钢子午线轮胎胎侧胶中的应用,现将研究情况简介如下。

1 实验

1.1 原材料

天然橡胶(NR),牌号 SMR20,马来西亚产品;顺丁橡胶(BR),牌号 9000,中石化北京燕山石油化工有限公司产品;活性纳米碳酸钙,牌号 NPCCA-602,超重力法生产,偶联剂改性,粒径 15~30 nm,山东海泽纳米材料有限公司产品;橡塑补强剂 MS,河南省新密市超新化工厂产品;轻质碳酸钙,石家庄市苍山钙业有限公司产品;其他材料均为轮胎行业常用原材料。

1.2 设备与仪器

XK-150 型开炼机,广东省湛江机械厂产品; GK255 型密炼机,益阳橡胶塑料机械集团有限公 司产品;F305 型密炼机,青岛高校软控股份有限公司产品;400×400 mm 平板硫化机,湖州宏桥橡胶机械有限公司产品;GT-TS2000M 伺服拉力机、GT-M2000A 无转子硫化仪和 GT-7080-S2 门尼粘度仪,高铁检测仪器有限公司产品;M200E 橡胶门尼粘度仪,北京友深电子仪器有限公司产品。

1.3 试样制备

小配合试验胶料在实验室用 XK-150 型开炼 机混炼。大配合试验胶料采用两段混炼工艺混炼,一段混炼在 GK255N 型密炼机中进行,终炼 在 F305 型密炼机中进行。

1.4 性能测试

各项性能均按相应国家标准进行测试。

2 结果与讨论

2.1 理化分析

活性纳米碳酸钙理化分析结果见表 1。

从表1可以看出,活性纳米碳酸钙理化性能 满足技术要求。

2.2 小配合试验

2.2.1 活性纳米碳酸钙的补强性能

为检测活性纳米碳酸钙的补强性能,将其与 炭黑N660、轻质碳酸钙、橡塑补强剂MS进行对

表 1 活性纳米碳酸钙理化分析结果

项 目	实测值	指标
外观	白色粉末	白色粉末
挥发分质量分数/%	0.07	€0.5
碳酸钙质量分数/%	97.02	≥93.0
pH 值	9.05	8.0~10.5
盐酸不溶物质量分数/%	0.003	≪0.4
DBP 吸收值/(g·kg ⁻¹)	372	250~450

比试验,结果见表 2。表中 A₁, A₂, A₃ 和 A₄ 配方的补强剂分别为炭黑 N660、活性纳米碳酸钙、轻质碳酸钙、橡塑补强剂 MS; 试验配方为 NR 100,硬脂酸 3,氧化锌 5,促进剂 DM 0.6,硫黄 2.5,补强剂 50。

从表 2 可以看出,活性纳米碳酸钙胶料的硬度、100%定伸应力比炭黑 N660 低,比橡塑补强剂 MS 胶料和轻质碳酸钙胶料略高;活性纳米碳酸钙胶料的拉伸强度和拉断伸长率比炭黑 N660 胶料、橡塑补强剂 MS 胶料、轻质碳酸钙胶料显著

提高。可以看出,作为一种功能性补强材料,活性 纳米碳酸钙有较好的补强效果。

2.2.2 活性纳米碳酸钙用量对胎侧胶性能的 影响

活性纳米碳酸钙用量对胎侧胶性能的影响见表 3。表中试验配方 B_2 , B_3 , B_4 除添加活性纳米碳酸钙外,其余组分同实际胎侧胶生产配方 B_1 。

从表 3 可以看出,在胎侧胶配方中加入活性 纳米碳酸钙,胶料的 M_L 和 M_H 略有增大, t_{10} 和 t_{90} 均随活性纳米碳酸钙用量的增大而缩短,这是因 为活性纳米碳酸钙呈弱碱性,能加快硫化速度;从 硫化曲线可以得出,试验配方胶料硫化平坦性与 生产配方胶料相差不大。

从表 3 还可以看出,活性纳米碳酸钙用量不超过 10 份时,硫化胶的拉伸强度和 300%定伸应力相当;活性纳米碳酸钙用量在 15 份时,硫化胶的拉伸强度和300%定伸应力下降幅度较

项 Αı A۰ A_4 硫化时间(145 °C)/min 15 15 30 30 15 30 15 30 邵尔 A 型硬度/度 62 46 47 60 45 47 38 44 100%定伸应力/MPa 2. 2 2.8 0.8 0.8 0.5 0.5 0.7 0.8 300%定伸应力/MPa 10.9 12.3 3. 2 3.4 2.2 1.7 3.6 3.5 拉伸强度/MPa 20.7 20, 5 25.9 22.1 18.7 17.0 13.81) 18, 2 724 612 拉断伸长率/% 564 527 686 660 680 625

表 2 活性纳米碳酸钙与其它补强剂的补强性能比较

注:1)数据偏差较大,可能由试验误差导致。

衰3 活性纳米碳酸钙用量对胎侧胶性能的影响

项 目	B ₁			B ₂			B_3			B ₄			
活性纳米碳酸钙用量/份		0			5			10			15		
硫化仪数据(151℃)													
$M_{\rm L}/({\rm dN \cdot m})$	1.2			1. 3				1.3			1. 3		
$M_{\rm H}/({\rm dN}\cdot{\rm m})$		7.5			7.6			7.8			7.5		
t ₁₀ /min	4.3			4. 2				4. 1			4.0		
t ₉₀ /min	14, 2			13.5			13. 1			12. 9			
硫化时间(151°C)/min	20	30	40	20	30	40	20	30	40	20	30	40	
邵尔 A 型硬度/度	55	53	51	54	52	54	54	54	53	54	54	52	
100%定伸应力/MPa	1.0	1.1	0.9	1.1	1.1	0.9	0.9	1.1	1.1	1.0	1.0	1.1	
300%定伸应力/MPa	5.3	5.3	5.1	5.2	5.4	4.3	4.4	5.8	5.1	5.0	4.9	5, 0	
拉伸强度/MPa	15.6	18. 11)	16.4	16.0	16.8	15.4	16.7	15.5	14. 4	15.0	14.7	14.0	
拉斯伸长率/%	676	718	700	664	703	822	803	653	612	679	659	650	

注:1)同表1。

大,这是因胎侧胶使用高耐磨炭黑,加人活性纳米碳酸钙后硫化胶性能会受到一定的影响,随着活性纳米碳酸钙用量增大,硫化胶性能呈下降趋势。

2.3 大配合试验

为进一步考察活性纳米碳酸钙对胶料性能的 影响,综合小配合试验结果,优选活性纳米碳酸钙 10 份的试验配方进行大配合试验,结果见表 4。

从表 4 可以看出,加入 10 份活性纳米碳酸钙后胶料的 M_L 和 M_H 略有增大, t_{10} 和 t_{50} 略有缩短,硫化速度加快,硫化胶的定伸应力和拉伸强度相当,硬度和拉断伸长率略有增大,与小配合试验结果基本相同。

表	4	-	3	◬	42	пΔ	4±	果
來	•		Ħ		II.	322	ᅒ	木

項 目		\mathbf{B}_{1}			B_3	
硫化仪数据(151℃)						
$M_{\rm L}/({ m dN} \cdot { m m})$		1. 1			1. 3	
$M_{\rm H}/({\rm dN}\cdot{\rm m})$		7.3			7.7	
t_{10}/\min		4.9			4.5	
t ₉₀ /mint		14.9			13.4	
硫化时间(151 ℃)/min	20	30	40	20	30	40
邵尔 A 型硬度/度	50	50	50	52	51	51
100%定伸应力/MPa	1. 2	1.1	1, 2	1. 1	1.1	1.1
300%定伸应力/MPa	5. 9	5.6	5.4	5. 7	5. 3	5, 5
拉伸强度/MPa	17.9	17.7	18.5	17.9	16.9	17.8
拉断伸长率/%	622	674	669	686	686	712

3 结论

(1)在全钢子午线轮胎胎侧胶中加入 10 份活性纳米碳酸钙,胶料的硫化速度有略加快,硫化胶的硬度、拉断伸长率略有增大,定伸应力和拉伸强度相当。

(2)在全钢子午线轮胎胎侧胶中加入 10 份活性纳米碳酸钙,每千克混炼胶成本降低 0.4 元,按年产轮胎 40 万套计算,每年可降低成本约80 万元。

因此,活性纳米碳酸钙用于全钢子午线轮胎 胎侧胶可行,并具有一定的经济效益。

江西将逐步建成世界最大有机硅单体生产企业

江西省近日做出规划,预计到"十二五"末期即 2015 年以前,江西将建成世界最大有机硅单体生产企业。

有机硅是人工合成、结构上以硅原子和氧原子为主链的高分子聚合物,是一种重要的非金属材料。有机硅粘接密封剂、灌封胶、绝缘涂料和树脂等应用于各种电子装置中。任何高分子材料的发展关键在于单体技术的发展。制备硅油、硅橡胶、硅树脂以及硅烷偶联剂的原料是各种有机硅单体,由几种基本单体可生产出成千种有机硅产品。因此,单体生产在有机硅工业中占重要地位,单体的生产水平直接反映有机硅工业发展水平。