偶联剂对凹凸棒土/三元乙丙橡胶 复合材料性能的影响

王国志,刘晓蕾,姚亮,宋帅帅,季佳佳 (徐州工业职业技术学院,江苏徐州 221140)

摘要:研究偶联剂品种和用量对凹凸棒土(AT)/三元乙丙橡胶(EPDM)复合材料性能的影响。结果表明:与未用偶联剂改性的AT/EPDM复合材料相比,偶联剂改性的AT/EPDM复合材料性能明显提高;采用偶联剂Si69改性的AT/EPDM复合材料性能较好;偶联剂Si69用量为1份时,AT用量为50份的AT/EPDM复合材料性能较好。

关键词: 凹凸棒土; 三元乙丙橡胶; 硅烷偶联剂; 复合材料

凹凸棒土(AT)简称凹凸土,是一种层链状过渡结构的以含水富镁硅酸盐为主的粘土,其化学分子式为Mg₈Si₈O₂₀(OH)₂(OH₂)₄·4H₂O,我国1979年首次发现AT。AT的最小结构单元是直径20~40 nm、长500~5000 nm的纳米单晶,单晶平行排列形成晶束,晶束相互聚集形成聚集体。从结构上看,AT是高分子材料的理想补强剂。相对于炭黑和白炭黑等传统填料,AT储量丰富,价格低廉,市场发展前景良好。但是作为无机纳米填料,AT在聚合物基体中很难分散,且界面结合力差,易发生相分离。若对其表面进行有机化改性,可以改善其在高分子材料中的相容性、分散性和亲和性,并得到综合性能优异的纳米复合材料^[1-3]。

近20年来,乙丙橡胶已成为七大合成橡胶中发展最快的品种,其年消耗量仅次于丁苯橡胶、顺丁橡胶而成为第三大合成橡胶。与一般合成橡胶相比,三元乙丙橡胶(EPDM)牌号繁多,加工技术复杂,填料直接影响EPDM胶料的性能和成本^[4-5]。研究表明^[6],AT/EPDM复合材料的物理性能优于轻质碳酸钙(或陶土或炭黑)/EPDM复合材料。AT/EPDM复合材料具有各向异性,表现出纤维增强橡胶的明显特征,应用前景广阔^[7-10]。

本工作研究偶联剂品种和用量对AT/EPDM复

合材料性能的影响。

1 实验

1.1 主要原材料

EPDM,牌号4045,中国石油吉林石化公司产品;AT,江苏玖川纳米材料科技有限公司产品;氧化锌,河南省固始县鹏鑫锌化有限公司产品;促进剂DM,TMTD和TS,中国石化南京化学工业有限公司产品;硫黄,浙江黄岩浙东橡胶助剂有限公司产品;石蜡油,兰州市西固城有限公司产品;松香,濮阳市光璞石化有限责任公司产品。

1.2 主要设备与仪器

XK-160型开炼机、QLB-50D/Q型平板硫化机和660-1型单刀式切胶机,无锡市第一橡塑机械厂产品;GT-M2000-A型无转子硫化仪和GT-7080-S2型门尼粘度试验机,高铁检测仪器有限公司产品;DL-2500N型电子式拉力试验机,江都市新真威试验机械有限责任公司产品。

1.3 试验配方

试验配方见表1。

1.4 复合材料制备

将AT在100 ℃下干燥5 h。开炼机辊距调至最小,辊温控制在60~70 ℃,加入EPDM塑炼至包

表1 试验配方

份

组分	配方编号										
	1#	2#	3#	4#	5#	6#	7#	8#	9#	10#	11#
EPDM	100	100	100	100	100	100	100	100	100	100	100
AT	40	40	40	40	40	40	30	35	45	50	55
氧化锌	5	5	5	5	5	5	5	5	5	5	5
便脂酸	1	1	1	1	1	1	1	1	1	1	1
流黄	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
足进剂TMTD	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.2
足进剂DM	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.3	1.5
足进剂TS	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
禺联剂KH-550	0	1	0	0	0	0	0	0	0	0	0
禺联剂KH-560	0	0	1	0	0	0	0	0	0	0	0
禺联剂KH-570	0	0	0	1	0	0	0	0	0	0	0
禺联剂A-151	0	0	0	0	1	0	0	0	0	0	0
禺联剂Si69	0	0	0	0	0	1	1	1	1	1	1
与蜡油	5	5	5	5	5	5	5	5	5	5	5
公香	4	4	4	4	4	4	4	4	4	4	4
合计	160.0	161.0	161.0	161.0	161.0	161.0	151.0	156.0	166.0	170.8	176.4

辊,加入小料和AT混炼均匀,再加入促进剂和硫 黄混炼均匀,薄通后下片,停放,硫化。

1.5 性能测试

胶料性能测试按照相应国家标准进行。

2 结果与讨论

2.1 偶联剂品种对AT/EPDM复合材料性能的 影响

偶联剂品种对AT/EPDM复合材料性能的影响见表2。从表2可以看出,与未添加偶联剂的1[#]配方胶料相比,添加偶联剂的2[#]~6[#]配方胶料 M_H 增大, t_{10} 延长,老化前后的硬度、定伸应力、拉伸强度明显增大,撕裂强度大幅提高,这是由于经偶联剂改性后,AT比表面积增大,AT与橡胶基体间的作用增强,与橡胶的相容性提高。还可以看出,在添加偶联剂的2[#]~6[#]配方胶料中,添加偶联剂Si69的6[#]配方胶料硬度、定伸应力、拉伸强度和撕裂强度均较大,耐热老化性能较好,这可能是发生了二次硫化

所致。总的来看,添加偶联剂Si69的AT/EPDM复合材料性能较好。

2.2 AT用量对AT/EPDM复合材料性能的影响

AT用量对AT/EPDM复合材料性能的影响见表 3。从表3可以看出:随着AT用量增大,胶料的M_L和M_H基本呈增大趋势,t₁₀和t₉₀基本呈延长趋势,老 化前后硬度、定伸应力、拉伸强度和撕裂强度明显增大;AT用量达到50份以上时,胶料的定伸应力、拉伸强度和撕裂强度虽仍然增大,但增幅降低,拉断伸长率有所减小,这可能是由于AT用量增大到一定程度,其聚集成网络结构,会阻滞高分子链段的运动。综合来看,偶联剂Si69用量为1份时,AT用量为50份较适宜。

3 结论

(1)与未添加偶联剂的AT/EPDM复合材料相比,添加偶联剂的AT/EPDM复合材料性能明显提高。

表2 偶联剂品种对AT/EPDM复合材料性能的影响

-F F	配方编号								
项目 -	1#	2#	3#	4#	5#	6#			
硫化仪数据(160 ℃)									
$M_{\rm L}/$ (dN • m)	17.8	17.7	17.1	17.1	17.0	16.7			
$M_{\rm H}$ / (dN·m)	59.2	60.3	60.4	60.9	60.1	60.0			
t_{10} /min	0.55	0.73	0.83	1.05	0.93	0.88			
t_{90}/min	9.50	6.63	6.50	9.25	9.95	8.10			
t_{100}/min	18.72	18.08	17.38	21.90	18.83	18.12			
硫化胶性能(160 ℃×t ₁₀₀)									
邵尔A型硬度/度	70	76	78	73	74	78			
100%定伸应力/MPa	2.53	4.50	5.74	6.57	3.73	6.84			
拉伸强度/MPa	4.68	7.56	11.49	11.40	7.29	12.00			
拉断伸长率/%	201	257	207	261	341	234			
拉断永久变形/%	12	16	12	16	28	16			
撕裂强度/ (kN・m ⁻¹)	19	27	37	38	29	36			
100 ℃ × 24 h热空气老化后									
邵尔A型硬度/度	78	84	85	80	83	87			
100%定伸应力/MPa	3.36	5.60	6.34	7.89	5.94	8.14			
拉伸强度/MPa	5.73	9.35	13.54	13.70	9.57	14.60			
拉断伸长率/%	331	363	317	380	418	356			

表3 AT用量对AT/EPDM复合材料性能的影响

~ 口	配方编号							
项 目	7#	8#	6#	9#	10#	11#		
硫化仪数据(160 ℃)								
$M_{\rm L}/$ (dN • m)	15.3	16.1	16.7	17.3	18.1	18.8		
$M_{\rm H}$ / (dN·m)	55.3	57.1	60.0	60.3	60.4	61.3		
t_{10} /min	0.82	0.83	0.88	0.82	0.92	1.13		
<i>t</i> ₉₀ /min	7.42	7.98	8.10	8.57	9.87	9.92		
t_{100} /min	13.83	16.90	18.12	17.38	18.27	20.08		
硫化胶性能(160 ℃×t ₁₀₀)								
邵尔 A 型硬度/度	72	74	78	77	79	81		
100%定伸应力/MPa	4.82	5.79	6.84	6.55	8.96	10.28		
拉伸强度/MPa	9.84	11.43	12.00	12.75	14.02	14.67		
撕裂强度/ (kN・m ⁻¹)	28	32	36	42	50	53		
拉断伸长率/%	272	311	234	261	265	238		
100 ℃ × 24 h热空气老化后								
邵尔 A 型硬度/度	80	85	87	87	87	88		
100%定伸应力/MPa	5.72	7.56	8.14	8.57	10.57	11.78		
拉伸强度/MPa	10.35	13.57	14.60	14.88	16.62	17.37		
拉断伸长率/%	342	341	356	371	384	366		

- (2)在采用几种常用偶联剂的AT/EPDM复合材料中,添加偶联剂Si69的复合材料性能较好。
- (3)偶联剂Si69用量为1份时,AT用量为50份的AT/EPDM复合材料性能较好。

我国AT储量丰富,但是由于发现较晚,开发利用水平较低,以致于这种经济意义重大的矿藏还只限于用作一般填料,甚至以原土形式廉价地出口,造成资源浪费,采用改性等深加工方式生产高附加值的产品将是我国AT的发展方向。

参考文献:

- [1] 马玉恒,方为民,马小杰. 凹凸棒土的研究与应用进展[J]. 材料导报,2006,20(9):43-46.
- [2] 梁文丽,田明.凹凸棒土增强橡胶复合材料的制备及其结构与性能研究[J].北京化工大学学报,1999,26(3):1-3.
- [3] 徐庆, 王斌, 缪利杰. 凹凸棒土改性及应用状况的研

- 究[J]. 甘肃石油和化工, 2008, 9(2): 1-4.
- [4] 郑自立,田煦,王濮. 中国坡缕石粉晶X射线衍射特征研究[J]. 矿产综合利用,1996(6):4-8.
- [5] 康文韬, 王刚, 刘少敏. 凹凸棒土在高聚物改性中的应用[J]. 天津化工, 2002, 6(l1): 1-4.
- [6] Tian M, Qu C D, Feng Y X, et al. Structure and Properties of Fibrillar Silicate/SBR Composites by Direct Blend Process[J]. Journal of Materials Science, 2003, 38 (24): 4917-4924.
- [7] 唐斌,李晓强,王进文. 乙丙橡胶应用技术[M]. 北京: 化学工业出版社,2005: 5-8.
- [8] 彭书传,范文元. 改性凹凸棒粘土作为橡胶补强剂的研究[J]. 合肥工业大学学报(自然科学版),1996,19(3):117-121.
- [9] 胡涛, 钱运华, 金叶玲, 等. 凹凸棒土的应用研究[J]. 中国矿业, 2005, 14(10): 73-76.
- [10] 高华,方兴. 凹凸棒土改性方法研究进展[J]. 资源开发与市场,2008,24(12):1090-1093.

Effect of Coupling Agent on the Properties of Attapulgite/EPDM Composites

Wang Guozhi, Liu Xiaolei, Yao Liang, Song Shuaishuai, Ji Jiajia (Xuzhou College of Industry and Technology, Xuzhou 221140, China)

Abstract: The influence of type and addition level of silane coupling agents on the properties of attapulgite (AT)/EPDM composites was investigated in this study. The experimental testing results showed that compared with unmodified AT/EPDM composites, the properties of the silane coupling agent modified AT/EPDM composites were much better. The best modification effect was achieved with silane coupling agent was Si69. When the addition level of Si69 was 1 phr and AT amount was 50 phr, the overall physical properties of AT/EPDM composites were good.

Keywords: attapulgite; EPDM; silane coupling agent; composite

欢迎订阅 2016 年《橡胶科技》《橡胶工业》《轮胎工业》 欢迎在三刊刊登广告