应用理论

# 乳胶气球浮力变化分析与垂直运动轨迹模拟

朱华健<sup>1,2</sup>,李凡珠<sup>1\*</sup>,谌志鹏<sup>3</sup>,何 红<sup>2\*</sup>,肖迪娥<sup>3</sup>,张立群<sup>1</sup>

(1.北京化工大学有机无机复合材料国家重点实验室,北京 100029;2.北京化工大学机电工程学院,北京 100029;3.中国化工株洲橡胶研究设计院有限公司临近空间探空气球材料与技术湖南省重点实验室,湖南株洲 412000)

摘要:基于理想气体状态方程,对乳胶气球的浮力进行计算推导,剖析气球内外气压差和昼夜浮升气体温度差对乳胶气球浮力的影响,并进一步探索中性浮力高度与浮重比的关系。通过建立几何模型、大气模型和动力学模型,利用开发的算法,结合施放试验数据,对乳胶气球升空过程中的垂直运动轨迹进行模拟预测。结果表明,当阻力系数为0.45时, 模拟预测结果与试验测试结果的吻合性较好。

关键词:乳胶气球;浮力;垂直运动轨迹;气压差;温度差;浮重比;阻力系数;模拟
 中图分类号:TQ336.8;TQ330.1
 文章编号:1000-890X(2021)01-0017-08
 文献标志码:A
 DOI:10.12136/j.issn.1000-890X.2021.01.0017



临近空间通常是指离地面20~100 km范围的 空域,其下是传统航空器的活动空间,其上是航天 器的运行范围。临近空间浮空器是一种主要依靠 浮力对重力进行平衡,能够长时间滞空并执行任 务的飞行平台,主要包括高空气球和平流层飞艇 两大类<sup>[1]</sup>。其中高空气球不需要推进装置,具有 飞行高度大、成本低、准备时间短、使用灵活等特 点。目前广泛应用的高空气球主要有零压气球、 超压气球和乳胶气球<sup>[2]</sup>。

零压气球的底部设有排气管道,当达到最大体积后,产生自由升力的浮升气体从排气管道排出,气球高度随之保持稳定。但是由于浮升气体的密度随大气的昼夜温度差而变化,零压气球内的浮升气体不可逆地排出,导致浮力减小,滞空时间有限。超压气球采用封闭结构,蒙皮为高强度塑料,升空过程中可以承受浮升气体与大气之间的压力差而使气球体积不变,因此浮力基本稳定,可以实现超长时间滞空,但其成本昂贵(超过数万美元<sup>[2-3]</sup>)。乳胶气球是以天然胶乳为主要原料,再

配合适量助剂加工而成,其拉断伸长率极高。乳 胶气球在升空过程中不断膨胀,直至球皮的拉伸 强度超过极限,气球破裂,探测结束。乳胶气球具 有成本低廉、施放方便、使用灵活的特点,探测高 度在30 km左右,如中国化工株洲橡胶研究设计院 有限公司2010年研制开发的750 II 型气象乳胶气 球的平均升空高度在29 km以上。本研究正是基 于此型号乳胶气球而展开<sup>[4]</sup>。

世界很多科研机构在研究高空气球,如美国国 家航空航天局(NASA)、法国国家空间研究中心、 日本宇宙科学研究所、中国科学院光电研究院气球 飞行器研究中心等。其中NASA在1989年就开始 对长时滞空气球进行研究。1989—1994年,NASA 进行了长时气球(LDB)<sup>[5]</sup>工程,旨在开发能在南 极和中纬度地区飞行的长时零压气球。1994年, NASA开始了长时气球飞行器(LDBV)<sup>[6]</sup>的研究计 划,对气球蒙皮材料和超压技术进行研究,大大减 小了昼夜浮升气体温度差导致的超压气球飞行高 度变化。1997年,NASA开展超长时气球(ULDB)<sup>[7]</sup>

基金项目:国家重点研发计划课题(2018YFC1506202)

作者简介:朱华健(1997—),男,安徽六安人,北京化工大学硕士研究生,主要从事乳胶气球的动力学模型及理论研究。

<sup>\*</sup>通信联系人(lifanzhu@mail.buct.edu.cn;hehong@mail.buct.edu.cn)

引用本文:朱华健,李凡珠,谌志鹏,等.乳胶气球浮力变化分析与垂直运动轨迹模拟[J].橡胶工业,2021,68(1):17-24.

**Citation**: ZHU Huajian, LI Fanzhu, SHEN Zhipeng, et al. Analysis of Buoyancy Change of Latex Balloon and Simulation of Vertical Trajectory[J]. China Rubber Industry, 2021, 68 (1):17–24.

的研发,通过采用新型的材料和结构设计,提高了 超压气球的超压承受能力和延长了飞行时间。

尽管零压气球和超压气球具有更长的滞空时间和更大的负荷能力,但是成本远远高于乳胶气球。因此仍然有研究团队在对乳胶气球进行开发和改进,目前国内的气象台站也基本采用乳胶气球作为探空仪器的载体进行高空探测。

斯坦福大学的Sushko等开发了一种乳胶气球 (ValBal),通过控制ValBal向外排气和向下抛重物, 使其在10~25 km范围内任意高度保持稳定,并大 大延长了滞空时间。在2016年11月的试验中,其 飞行时间达到79 h,从美国加州飞至加拿大的魁北 克,飞行里程达到5 633 km (3 500英里)<sup>[2]</sup>。2017 年,该团队通过对ValBal的机械结构和控制系统 进行改进,于12月创下了121 h的最长飞行时间记 录。至此,该团队已先后5次打破乳胶气球飞行时 间的世界纪录。ValBal的成本在1 000美元以下, 远低于同等性能的零压气球和超压气球<sup>[8]</sup>。而目 前国内对乳胶气球的研究仍然不够。

本课题组联合临近空间探空气球材料与技术 湖南省重点实验室对乳胶气球进行研究,基于理 想气体状态方程对乳胶气球浮力进行推导计算, 分析乳胶气球内外气压差以及昼夜浮升气体温度 差对其浮力及运动产生的影响;通过对中性浮力 的推导和计算,得到中性浮力高度与浮重比的关 系,确立乳胶气球在特定高度水平漂浮的原理和 条件;在合理假设的基础上,建立乳胶气球的几何 模型、大气模型以及动力学模型,利用开发的算 法,结合施放试验数据,对乳胶气球的垂直运动轨 迹进行模拟预测,分析阻力系数对模拟结果的影 响,从而为乳胶气球的进一步研究和实际施放提 供参考。

#### 1 乳胶气球浮力变化分析

对于乳胶气球浮力变化的分析,从最基本的 理想气体状态方程开始:

$$PV = nRT$$

(1)

式中:P,V,n和T分别表示气体的压力、体积、物质的量和温度;R为理想气体常数,取值8.314 J•(mol•K)<sup>-1</sup>。

若温度恒定,则由质量守恒和理想气体状态 方程可以得到气体密度(ρ)计算式:

$$\rho = \rho^0 \left( P/P^0 \right) \tag{2}$$

式中,上角标0表示初始状态,即 $\rho^0$ 为气体初始密度, $P^0$ 为初始气压。

#### 1.1 乳胶气球内外气压差对浮力的影响

初始状态下乳胶气球内外气压差与大气压相 比数量级很小,故假设初始状态下气球内外气压 差为0,即 $P_{ass}^{o} = P_{afr}^{o} = P^{o}$ ,气球浮力( $F_{B}$ )表示为:

$$F_{\rm B} = (\rho_{\rm air} - \rho_{\rm gas})gV_{\rm gas} = g\frac{V_{\rm gas}}{P^0}(P_{\rm air}\rho_{\rm air}^0 - P_{\rm gas}\rho_{\rm gas}^0) \quad (3)$$

式中:下角标air表示气球周围大气,gas表示气球 内的浮升气体;g为重力加速度。用 $\Delta P$ 表示气球内 外气压差,即 $\Delta P = P_{sas} - P_{airo}$ 式(3)可表示为:

$$F_{\rm B} = g V_{\rm gas}^{\rm 0} \left[ \left( \rho_{\rm air}^{\rm 0} - \rho_{\rm gas}^{\rm 0} \right) - \frac{\Delta P}{P_{\rm gas}} \rho_{\rm air}^{\rm 0} \right]$$
(4)

图1所示为试验测得的10 km海拔高度范围内 乳胶气球内外气压差与海拔高度的关系曲线。从 图1可知,在10 km海拔高度范围内气球内外气压 差在0~150 Pa之间,这与A. Sushko等<sup>[2]</sup>的研究中 乳胶气球内外气压差保持在150 Pa范围内的要求 吻合。故将气球的内外气压差设为150 Pa,并求出 气球内外气差与大气压的比值。





图2所示为乳胶气球内外气压差、大气压以及 两者的比值。

从图2可以看出,气球内外气压差在25 km高 度范围内比大气压小1个数量级以上,故可忽略。 则根据式(4),乳胶气球浮力几乎不受内外气压差 的影响,保持恒定。





## 1.2 昼夜浮升气体温度差对乳胶气球浮力的 影响

温度也是影响乳胶气球运动的重要因素。在 忽略气球内外气压差的条件下,结合理想气体状 态方程,气球浮力可以表示为:

$$F_{B} = \left(\frac{M_{\rm air}T_{\rm gas}}{T_{\rm air}}n_{\rm gas} - m_{\rm gas}\right)g\tag{5}$$

式中,*M*为摩尔质量,*m*为质量。若忽略浮升气体的 质量,则温度变化对气球浮力的影响如下:

$$F_{B} - F_{B}^{0} = \frac{T - T^{0}}{T^{0}} F_{B}^{0}$$
(6)

式中, $T^{0}$ 和T分别表示变化前后的温度, $F_{B}^{\circ}$ 和 $F_{B}$ 分别表示温度变化前后的气球浮力。

图3所示为乳胶气球内浮升气体(氢气)昼夜 温度的测试值。由图3可知,高空中夜晚的氢气温 度明显低于白天的氢气温度,这主要由白天的太 阳辐射导致。由式(6)可知,氢气温度的变化将导 致乳胶气球的浮力产生同等比例的变化。因此若 乳胶气球在高空中漂浮,昼夜交替产生的氢气温 度差会导致气球运动状态发生改变。对于普通的 乳胶气球,难以实现在高空滞留过夜。因此,若要 使乳胶气球实现长达数天的滞空,需要加装排气 和抛下配重装置:夜晚温度降低导致浮力减小,适 量抛下配重进行平衡;白天温度升高,则需排出一 定量的浮升气体,以减小浮力。

#### 1.3 乳胶气球中性浮力

中性浮力状态即气球的浮力与自身质量以及 负载产生的重力达到平衡。达到此状态后,在阻



图3 乳胶气球浮升气体昼夜温度的测试值 Fig. 3 Day and night temperature test data of lifting gas of latex balloon

力作用下气球逐渐减速,最终在某一高度漂浮。 浮力与重力平衡的表达式如下:

 $gV_{gas}(\rho_{air}-\rho_{gas}) = (m_{payload}+m_{balloon})g$  (7) 式中, $m_{balloon}$ 为气球质量, $m_{payload}$ 为系统其他负载, 进一步推导:

$$V_{\rm gas}\rho_{\rm air} = m_{\rm gas} + m_{\rm payload} + m_{\rm balloon} \tag{8}$$

$$n_{\rm gas} M_{\rm air} \frac{T_{\rm gas} P_{\rm air}}{P_{\rm gas} T_{\rm air}} = m_{\rm gas} + m_{\rm payload} + m_{\rm balloon} \tag{9}$$

$$n_{\text{gas}}M_{\text{air}}\left(1+\frac{\Delta T}{T_{\text{air}}}\right)\left(1-\frac{\Delta P}{P_{\text{air}}+\Delta P}\right) = m_{\text{gas}} + m_{\text{payload}} + m_{\text{balloon}}$$
(10)

式中, **D**T为气球内外温度差。

假设不考虑气球内外温度差,且气球内外气 压差保持恒定,则只要气球未破裂,由于大气压 (*P*<sub>air</sub>)随高度增大而减小,等式两边最终必在某一 高度相等,即达到中性浮力。

采用750 II 型气象乳胶气球施放试验时的 数据,即气球质量( $m_{\text{balloon}}$ )为0.75 kg,其他负载 ( $m_{\text{payload}}$ )为0.6 kg,净举力( $F_{\text{L}}$ ,以质量计)为1.4 kg,即 $F_{L} = \frac{F_{\text{B}}}{\rho} - (m_{\text{balloon}} + m_{\text{payload}})_{\circ}$ 

结合经典的美国标准大气1976年模型<sup>[1,9]</sup>,对 乳胶气球达到中性浮力的具体高度进行计算。试 验中采用氢气作为浮升气体。

不考虑气球内外温度差,设气球内外气压差为150 Pa。根据大气模型,利用Matlab软件编写程序,对式(10)进行求解,得到实现中性浮力的海拔高度为44 377 m。而普通乳胶气球的最大飞行高度约为30 km,在达到中性浮力前气球即发生了破裂。

将施放时净举力与系统自质量的比值定义为 浮重比,用k表示,即 $k = \frac{F_{\rm L}}{m_{\rm gas} + m_{\rm balloon} + m_{\rm payload}}$ 。

20

当浮重比等于0时,乳胶气球在地面即达到中 性浮力。取不同的浮重比,即改变净举力,得到中 性浮力高度与浮重比的关系曲线,如图4所示。



图4 乳胶气球中性浮力高度与浮重比的关系曲线 Fig. 4 Relationship curve of equilibration hight and buoyancy to weight ratio of latex balloon

对于乳胶气球的中性浮力高度,图4的结果与 A. Sushko等<sup>[8]</sup>的研究结果呈现一致性。由图4即 可根据实现中性浮力的目标高度得到所需的氢气 充气量,如若要使乳胶气球在30 km高度处达到中 性浮力,则地面的浮重比约为0.13,即需要控制*F*<sub>L</sub> 为0.19 kg。而乳胶气球若要在更大的高度实现平 衡,则需要进一步提高球皮材料的拉断伸长率,保 证其在达到中性浮力前不发生破裂。

通过理论推导,分析气球内外气压差和昼夜 浮升气体温度差对乳胶气球浮力的影响,讨论了 乳胶气球运动的特点以及难以长时间滞空和过夜 的原因;再通过对中性浮力的计算,得到中性浮力 高度与浮重比的关系,这对乳胶气球的施放工艺 具有指导意义。以上研究均基于理论推导,只能 对乳胶气球在某一特定条件下的状态进行表征, 而不能直观地预测其运动轨迹。下面通过建立算 法模型对乳胶气球升空过程中的垂直运动轨迹进 行模拟预测。

#### 2 算法模型的建立

为了实现对乳胶气球垂直运动轨迹进行模拟 预测,在如下假设的基础上,建立了几何模型、大 气模型和动力学模型。 (1)乳胶气球的形状始终为球形。

(2) 乳胶气球内外温度和气压均相等,
 P<sub>gas</sub>=P<sub>air</sub>, T<sub>gas</sub>=T<sub>air</sub>。

(3)浮升气体采用纯氢气,且上升过程中不存在漏气。

(4)不考虑大气湿度、风等其他因素的影响。

#### 2.1 几何模型

根据地面处的受力分析,乳胶气球初始体积为:

$$V_{\rm gas}^{0} = \frac{m_{\rm balloon} + m_{\rm payload} + F_{\rm L}}{(M_{\rm air} - M_{\rm gas})P_{\rm air}^{0}}$$
(11)

再根据理想气体状态方程,即可得到浮升气 体物质的量,这个量在运动过程中保持不变。

$$n_{\rm gas} = \frac{P_{\rm air}^{\,0} V_{\rm gas}^{\,0}}{R T_{\rm air}^{\,0}} \tag{12}$$

则升空过程中的气球体积为:

$$V_{\rm gas} = \frac{n_{\rm gas} R T_{\rm air}}{P_{\rm air}} \tag{13}$$

气球直径为:

$$D = \left(\frac{6V_{\text{gas}}}{\pi}\right)^{\frac{1}{3}} \tag{14}$$

气球从上向下的垂直投影面积(Atop)为:

$$A_{\rm top} = \frac{\pi}{4} D^2 \tag{15}$$

### 2.2 大气模型

本算法采用施放试验中实际测得的大气温度 与大气压数据(如图5和6所示)。大气温度随海拔 高度呈现出先降低后升高的趋势,最低温度低于 -70℃。当海拔高度在0~16 km范围内,每升高1 km,大气温度下降约5.7℃;当海拔高度在16~27





Fig. 6 Relationship curve of atmospheric pressure and altitude

km范围内,每升高1 km,大气温度升高约2.2 ℃。

根据理想气体状态方程,即可由大气温度与 压力得到大气密度为:

$$\rho_{\rm air} = \frac{P_{\rm air} M_{\rm air}}{RT_{\rm air}} \tag{16}$$

2.3 动力学模型

高空乳胶气球的浮力由浮升气体与周围大气的密度差产生,以帮助探测系统克服重力和阻力 升空并驻留。系统在垂直方向上的运动微分方 程为<sup>[10-11]</sup>:

$$\frac{\mathrm{d}v_{z}}{\mathrm{d}t} = \frac{F_{\mathrm{B}} - (m_{\mathrm{ballon}} + m_{\mathrm{payload}})g - R}{m_{\mathrm{virtual}}} \tag{17}$$

式中:v<sub>z</sub>为系统在垂直方向上的速度;R为垂直方向 上受到的阻力,用阻力系数(C<sub>d</sub>)计算;m<sub>virtual</sub>为系统 总质量,其中考虑了被气球拖动的空气质量,采用 虚拟质量系数(C<sub>virtual</sub>)计算。

$$R = 0.5 \rho_{\rm air} v_z^2 C_{\rm d} A_{\rm top} \tag{18}$$

 $m_{\text{virtual}} = m_{\text{balloon}} + m_{\text{payload}} + m_{\text{gas}} + C_{\text{virtual}}(\rho_{\text{air}}V_{\text{gas}})$  (19)

阻力系数为气球系统形状以及雷诺数 (*Re*)的函数;虚拟质量系数由气球的尺寸和形状决定,取值范围为0.25~0.5。本算法参考 I.V. Dosselaer<sup>[12]</sup>的研究,取值为0.37。

#### 3 模拟结果分析

基于上述模型,采用Matlab软件开发的算法 可对乳胶气球垂直运动轨迹进行模拟预测,同样 采用乳胶气球高空探测数据。

阻力系数为算法模型中重要的影响因素,存 在多种取值方法。将气球形状简化为球形后,阻 力系数的数值取决于雷诺数。

$$Re = \frac{\rho_{\rm air} v l}{\mu_{\rm air}} \tag{20}$$

$$\mu_{\rm air} = 1.458 \times 10^{-6} \times \frac{(T_{\rm air})^{1.5}}{T_{\rm air} + 110.4}$$
(21)

式中:v为气球与大气的相对速度;l为气球的特征 长度,对于圆形球体即为直径D;µ<sub>air</sub>为大气的动力 粘度<sup>[10]</sup>。

对于阻力系数与雷诺数的关系,A.L. Morris<sup>[13]</sup> 推荐采用下式进行取值。

$$C_{\rm d} = \begin{cases} 0.47 + \frac{24}{R_e + 0.01} & R_e \le 4.5 \times 10^5 \\ 0.3 & R_e > 4.5 \times 10^5 \end{cases}$$
(22)

在L.A.Carlson等<sup>[14]</sup>建立的算法中,阻力系数 根据下式取值:

$$C_{d} = \begin{cases} 2 400 & R_{e} \leq 10^{-2} \\ 24/R_{e} & 10^{-2} < R_{e} < 10^{0} \\ 24 \times Re^{-0.757} & 10^{0} < R_{e} < 10^{1} \\ 16.04 \times Re^{-0.582} & 10^{1} < R_{e} < 10^{2} \\ 6.025Re^{-0.369} & 10^{2} < R_{e} < 10^{3} \\ 0.47 & 10^{3} < R_{e} < 10^{5} \\ 0.5 & 10^{5} < R_{e} < 2.5 \times 10^{6} \\ 6.729 \ 7 \times 10^{-20} Re^{3.9495} \ R_{e} > 2.5 \times 10^{6} \end{cases}$$
(23)

根据J. Conner等<sup>[15]</sup>的研究,阻力系数可以用下 式计算:

 $C_{\rm d} = 0.72 - 2.57 \times 10^{-6} Re + 4.71 \times 10^{-12} Re^2 -$ 

 $4.04 \times 10^{-18} Re^3 + 1.31 \times 10^{-24} Re^4 \qquad (24)$ 

除了以上根据雷诺数进行阻力系数的取值方法外,也有部分研究阻力系数取定值,如ACHAB算法<sup>[16-17]</sup>和SINBAD算法<sup>[18]</sup>中阻力系数取值为0.45,BADS算法<sup>[12]</sup>中阻力系数取值为0.55。

根据雷诺数 $(10^2 \sim 10^6)$ 对阻力系数进行取值 的方法如图7所示。根据A. Gallice等<sup>[19]</sup>的研究, 对于地面半径约为1 m的探空气球,在其升空过程 中,雷诺数从地面的8×10<sup>5</sup>~9×10<sup>5</sup>逐渐减小至30 km处的6×10<sup>4</sup>~9×10<sup>4</sup>。

将动力学模型中的阻力系数分别按以上方法 取值,基于本算法,得到的乳胶气球垂直运动轨迹 如图8所示。

分别计算以上各阻力系数取值方法得到的结果 与试验结果的相对平方误差(E),计算公式如下:



图7 根据雷诺数对阻力系数进行取值的方法 Fig. 7 Methods to determine values of drag coefficient based on Reynolds number



图8 不同阻力系数取值对应的乳胶气球垂直运动

轨迹模拟结果 Fig.8 Simulation results of vertical trajectory of latex balloon corresponding to different drag coefficients

$$E = \sum_{i=1}^{N} \left( 1 - \frac{H_{\text{simulation}}}{H_{\text{test}}} \right)^2 \tag{25}$$

式中,N为数据点数量, $H_{simulation}$ 为模拟得到的高度,  $H_{test}$ 为试验测得的高度。

Carlson模型、Morris模型、Conner模型、阻力 系数为0.45和阻力系数为0.55的E分别为34.80, 76.44,1785.82,12.35和72.15。

根据误差计算结果,当阻力系数为0.45时, 模拟得到的乳胶气球垂直运动轨迹与试验数据最 为吻合。从图8可以看出,与试验结果相比,模拟 结果具有较高的精确度,说明建立的模型可以用 于对乳胶气球垂直运动轨迹的模拟预测。当阻力 系数为0.45时,程序运行得到的乳胶气球状态(浮力、阻力、速度、加速度)变化如图9和10所示。



图9 乳胶气球升空过程中浮力和阻力的变化 Fig. 9 Changes of buoyancy and drag force of latex balloon during lift-off process



图10 乳胶气球升空过程中速度和加速度的变化 Fig. 10 Changes of velocity and acceleration of latex balloon during lift-off process

对浮力、阻力和加速度的均值进行求解,并计 算其方差,以衡量离散程度,计算结果如下:浮力、 阻力和加速度的均值分别为26.83 N,13.64 N和 0.002 8 m • s<sup>-2</sup>;均值方差分别为0.011 8 N<sup>2</sup>,0.035 1 N<sup>2</sup>和0.005 2 m<sup>2</sup> • s<sup>-4</sup>。

综上可以看出,乳胶气球升空过程中,其浮力 和阻力基本保持不变,与1.1节中理论推导的结果 一致。乳胶气球升空过程中的加速度同样几乎恒 定,速度随高度增大而增大。

4 结论

(1)在25 km高度范围内,当温度恒定,乳胶气

球内外气压差对浮力的影响可以忽略,浮力几乎 恒定。

(2)由昼夜浮升气体温度差导致乳胶气球浮 力变化,这是普通乳胶气球难以在高空滞留过夜 的原因,可以通过控制气球排气和抛重物延长滞 空时间。

(3)乳胶气球在未破裂的前提下,必定在某一 高度达到中性浮力,从而实现水平漂浮。可以通 过控制乳胶气球净举力与系统总质量的比值来控 制这一高度。

(4)将乳胶气球形状简化为球形,忽略气球内 外温度差和气压差,在不考虑气体纯度、漏气、大 气湿度、风速等因素的前提下建立的算法模型,可 以较好地模拟预测乳胶气球的垂直运动轨迹,且 阻力系数为0.45时得到的模拟结果精确度最高。 乳胶气球升空过程中的浮力、阻力和加速度几乎 不变,速度增大。

(5)通过理论推导分析了乳胶气球浮力的 变化,为深入探讨乳胶气球运动的特点提供了借 鉴。通过建立算法模型,对乳胶气球升空过程中 的垂直轨迹进行了模拟,可以直观地预测其运动 状态,从而指导实际施放工艺。但是本研究在理 论推导和模型建立过程中进行了一系列假设和简 化,包括乳胶气球形状、气球内外气压差和温度 差、大气中其他要素的影响等,这些因素对试验结 果的影响仍然有待分析和研究。

#### 参考文献:

- [1] 李小建. 临近空间浮空器热-结构耦合数值模拟研究[D]. 南京:南 京航空航天大学,2013:10-11.
- [2] Sushko A, Tedjarati A, Creus-Costa J, et al. Low Cost, High Endurance, Altitude-controlled Latex Balloon for Near-space Research (ValBal) [C]. 2017 IEEE Aerospace Conference. Piscataway, New Jersey: IEEE, 2017: 1–9.
- [3] Yajima N, Izutsu N, Imamura T, et al. Scientific Ballooning: Technology and Applications of Exploration Balloons Floating in the Stratosphere and the Atmospheres of Other Planets[M]. New York: Springer Science & Business Media, 2009:9–12.
- [4] 中国化工株洲橡胶研究设计院有限公司.气象气球[EB/OL].
  http://www.chemchina.com.cn/xjzzy/cpyfw/ppysb/qxqq/ B27030201web\_1.htm,2020-06-01.

- [5] Cathey H M. Development of the NASA Long Duration Balloon Vehicle[J]. Advances in Space Research, 2000, 26 (9) : 1345–1348.
- [6] Orr G. The Long Duration Balloon Vehicle (LDBV) Fight System Development[C]. 34th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 1996:1–11.
- [7] Smith I S. Overview of the Ultra Long Duration Balloon Project[J].
  Advances in Space Research, 2002, 30 (5) :1205–1213.
- [8] Sushko A, Tedjarati A, Creus-Costa J, et al.Advancements in Lowcost, Long Endurance, Altitude Controlled Latex Balloons (ValBal) [C].
   2018 IEEE Aerospace Conference. Piscataway, New Jersey: IEEE, 2018:1-10.
- [9] Schlatter T W. Atmospheric Composition and Vertical Structure[J]. Environmental Impact and Manufacturing, 2009 (6):1–54.
- [10] Farley R E. BalloonAscent: 3-D Simulation Tool for the Ascent and Float of High-altitude Balloons[C]. AIAA 5th ATIO and 16th Lighter-Than-Air Sys Technology and Balloon Systems Conferences. Reston, Virginia: AIAA, 2005:1-15.
- [11] Saleh S, Weiliang H E. New Design Simulation for a High-altitude Dual-balloon System to Extend Lifetime and Improve Floating Performance[J]. Chinese Journal of Aeronautics, 2018, 31 (5):1109– 1118.
- [12] Dosselaer I V. Buoyant Aerobot Design and Simulation Study: BADS[D]. Delft, Netherlands: Delft University of Technology, 2014:46-54.
- [13] Morris A L.Scientific Ballooning Handbook[M].Boulder, Colorado: NCAR Technical Note, 1975:18–23.
- [14] Carlson L A, Horn W J. A Unified Thermal and Vertical Trajectory Model for the Prediction of High Altitude Balloon Performance[D]. College Station, Texas: Texas A & M University, 1981:16–20.
- [15] Conner J, Arena A. Near Space Balloon Performance Predictions[C]. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virginia: AIAA, 2010: 1–8.
- [16] Palumbo R, Russo M, Filippone E, et al. ACHAB: Analysis Code for High–altitude Balloons[C]. AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston, Virginia: AIAA, 2007: 1–11.
- [17] Palumbo R. A Simulation Model for Trajectory Forecast, Performance Analysis and Aerospace Mission Planning with High Altitude Zero Pressure Balloons[D]. Naples, Italy: Università degli Studi di Napoli Federico II, 2007:21–24.
- [18] Garde G. Comparison of Two Balloon Flight Simulation Programs[C]. AIAA 5th Aviation, Technology, Integration, and erations Conference. Reston, Virginia: AIAA, 2005:1–19.
- [19] Gallice A, Wienhold F G, Hoyle C R, et al. Modeling the Ascent of Sounding Balloons: Derivation of the Vertical Air Motion[J]. Atmospheric Measurement Techniques, 2011, 10(4):2235–2253.

收稿日期:2020-08-01

## Analysis of Buoyancy Change of Latex Balloon and Simulation of Vertical Trajectory

ZHU Huajian<sup>1</sup>, LI Fanzhu<sup>1</sup>, SHEN Zhipeng<sup>2</sup>, HE Hong<sup>1</sup>, XIAO Di' e<sup>2</sup>, ZHANG Liqun<sup>1</sup>

(1. Beijing University of Chemical Technology, Beijing 100029, China; 2. Hunan Key Laboratory of Near-space Meteo-ballon Materials and Technology, Zhuzhou Rubber Research & Design Institute Co. ,Ltd of ChemChina, Zhuzhou 412000, China)

**Abstract**: Based on the ideal gas equation of state, the buoyancy of the latex balloon was calculated and deduced, and the effects of the air pressure difference inside and outside latex balloon and the temperature fluctuation of the lift gas between day and night on the buoyancy of the latex balloon were analyzed. The relationship between the equilibration height and buoyancy to weight ratio was also studied. By establishing geometric model, atmospheric model and dynamic model, using the developed algorithm and release experimental test data, the vertical trajectory of the latex balloon during the lift-off process was simulated and predicted. It was found that, when the drag coefficient was 0.45, the simulated prediction results were in good agreement with the experimental test results.

**Key words**: latex balloon; buoyancy; vertical trajectory; pressure difference; temperature difference; buoyancy to weight ratio; drag coefficient; simulation

装配曙光院国产航空轮胎的ARJ21飞机首飞 成功 2020年11月23日11时50分,在山东东营胜 利机场,伴随着ARJ21-700飞机有力的轰鸣声由 远及近,ARJ21飞机平稳着陆,装配中国化工曙光 橡胶工业研究设计院有限公司(简称曙光院)"三 环"牌航空轮胎的ARJ21飞机历经4天试飞,各科 目测试圆满成功。装配国产航空轮胎的ARJ21飞 机首飞成功,标志着其国产化进程向前迈进了新 的一步。

ARJ21飞机是我国首次按照国际标准研制的 具有自主知识产权的中短程新型涡扇支线商用 飞机,也是我国第1次完全自主设计并制造的支 线飞机,是中国民航业"两干两支"战略的重要组 成部分。目前,中国商用飞机有限责任公司已向 客户交付ARJ21飞机39架,包括国航、南航等在内 的ARJ21飞机航线运行客户已达7家,累计航线86 条,通航城市64座。

航空轮胎是影响民航客机飞行安全的关键部件,其设计制造技术位于轮胎行业的金字塔顶端, 全球只有屈指可数的企业可以研制并制造航空轮 胎。在此之前,ARJ21飞机一直装配国外航空轮 胎,价格昂贵,受制于人。2020年9月16日,中国科 学院白春礼院长将航空轮胎列入美国"卡脖子"任 务清单。曙光院研发团队历经3年攻关,自主成功 研制可在额定速度为378 km・h<sup>-1</sup>、超速着陆速度 为418 km・h<sup>-1</sup>,以及多种苛刻工况下安全使用的 高性能航空轮胎,其产品性能超越国外同类型航 空轮胎,减小了飞机更换轮胎的频率,降低了航空 公司的运营成本,成功突破ARJ21飞机轮胎"卡脖 子"难题。

曙光院是上市公司中国化工具华科技旗下子 公司,50年来在航空轮胎设计、制造和检测方面积 淀了雄厚的研发实力,掌握国内领先、国际一流的 航空轮胎核心技术,擎起了"航空轮胎国家队"的 旗帜,先后成功研制出多种型号民航航空轮胎。

"随着航空轮胎国产化的持续推进,未来将有 越来越多的飞机装备国产高性能'三环'航空轮胎 翱翔蓝天!"在装配曙光院国产航空轮胎的ARJ21 飞机首飞现场,曙光院院长王继泽如是说。

(中国化工曙光橡胶工业研究设计院有限公司 高香丽)