# Top-down控制图法评定天然橡胶塑性值 测量不确定度

#### 杨映华

(西双版纳州质量技术监督综合检测中心,云南 景洪 666100)

摘要:基于Top-down技术,采用控制图法评定天然橡胶塑性值测量不确定度。利用实验室日常分析质控样的质控数据进行评定,通过统计证明时序数据的正态性和独立性处于统计受控,并验证了时序数据的精密度受控、偏倚受控和随机分布状态。结果表明该方法评定天然橡胶塑性值测量不确定度较客观。

关键词:Top-down技术;控制图法;天然橡胶;塑性值;测量不确定度

中图分类号:TQ330.7;TQ332 文献标志码:A 文章编号:1000-890X(2019)09-0708-04 DOI:10.12136/j.issn.1000-890X.2019.09.0708

测量不确定度是评价测量结果是否科学有效 的重要指标。目前,测量不确定度的评定方法主 要有GUM法<sup>[1-4]</sup>、MC法<sup>[4-5]</sup>和Globe法<sup>[4,6-7]</sup>。GUM 法和MC法是基于不确定度传播和概率分布传播 来评定与表示测量不确定度的方法。目前常用的 是GUM法的bottom-up技术,该评定方法步骤繁 琐,容易造成不确定度分量遗漏或重复计算,某些 不确定度分量难以准确量化。在使用GUM法进行 不确定度评定时,样品重复测定引入的不确定度 分量通常为主要分量,重复性检测一般在短时间 内完成,因此使用GUM法评定不确定度无法反映 实验室长期质控状态。

Globe (Top-down) 法的核心思想是: 在控制 不确定度来源或程序的前提下, 运用统计学原理 直接评定特定测量系统的受控结果的测量不确定 度。目前典型的Globe (Top-down) 法有精密度法、 控制图法、线性拟合法和经验模型法。在确保实 验室测量系统处于统计受控状态的前提下, Topdown技术是 JJF 1059. 1—2012的简化和延伸应 用, 符合ISO/IEC 17025: 2017<sup>[8]</sup>的要求。这种技术

基金项目:云南省质量技术监督局科技计划项目(2017ynzjkj03)

 $E-mail: yahyayang@hotmail. \ com$ 

使用长期积累的质控数据,评估过程能全面反映 不确定度的潜在来源,同时步骤简单,避免了不确 定度分量遗漏和难以量化的问题。

塑性值是橡胶及其他弹性体材料的关键检测项目<sup>[9-10]</sup>,采用GUM法评定快速塑性计法塑性值的测量不确定度时,由测试温度和时间引入的不确定度分量难以准确量化。本工作结合实验室日常质控数据,采用Top-down控制图法评定天然橡胶塑性值测量不确定度。

## 1 实验

## 1.1 材料

自制质控样品,对恒粘(CV)天然橡胶按照 GB/T 15340—2008<sup>[11]</sup>规定的方法进行均匀化,按 GB/T 3517—2014<sup>[12]</sup>制备样品,裁切成圆柱形试 样;铝片,厚度为(0.400±0.012) mm。

## 1.2 试验设备和仪器

XK160型开炼机,无锡市第一橡胶机械有限 公司产品;GT-7016-AR型气压式自动切片机,中 国台湾高铁科技股份有限公司产品;P14/VT型快 速塑性计,英国华莱士公司产品。

## 1.3 测量程序

由熟悉测量系统的不同人员在期间精密度条件下,按GB/T 3510—2006<sup>[13]</sup>对质控样品进行测试,测试频率为每周2次(周二、周五各1次)。

作者简介:杨映华(1985—),男,云南永平人,西双版纳州质量 技术监督综合检测中心高级工程师,硕士,主要从事橡胶及橡胶制 品检测技术研究。

### 2 测量不确定度评定

## 2.1 测定结果

在期间精密度测量条件下,不同人员对试样 塑性值多次定期测量结果见表1。

| 时序 | 塑性值  | 移动极差 | 指数加权移动<br>平均值 |  |
|----|------|------|---------------|--|
| 1  | 34.5 | _    | 34.5          |  |
| 2  | 35.3 | 0.8  | 34.8          |  |
| 3  | 33.0 | 2.3  | 34.1          |  |
| 4  | 34.1 | 1.1  | 34.1          |  |
| 5  | 34.8 | 0.7  | 34.4          |  |
| 6  | 32.9 | 1.9  | 33.8          |  |
| 7  | 34.9 | 2.0  | 34.2          |  |
| 8  | 33.1 | 1.8  | 33.8          |  |
| 9  | 34.4 | 1.3  | 34.0          |  |
| 10 | 34.1 | 0.3  | 34.1          |  |
| 11 | 34.0 | 0.1  | 34.0          |  |
| 12 | 34.0 | 0.0  | 34.0          |  |
| 13 | 35.3 | 1.3  | 34.5          |  |
| 14 | 35.7 | 0.4  | 35.0          |  |
| 15 | 34.4 | 1.3  | 34.8          |  |
| 16 | 34.9 | 0.5  | 34.8          |  |
| 17 | 35.6 | 0.7  | 35.1          |  |
| 18 | 35.2 | 0.4  | 35.2          |  |
| 19 | 34.7 | 0.5  | 35.0          |  |
| 20 | 34.1 | 0.6  | 34.6          |  |
| 21 | 34.0 | 0.1  | 34.4          |  |
| 22 | 34.3 | 0.3  | 34.3          |  |
| 23 | 34.1 | 0.2  | 34.2          |  |
| 24 | 35.1 | 1.0  | 34.6          |  |
| 25 | 34.0 | 1.1  | 34.4          |  |
| 26 | 34.8 | 0.8  | 34.5          |  |
| 27 | 34.9 | 0.1  | 34.7          |  |
| 28 | 34.5 | 0.4  | 34.6          |  |
| 29 | 35.8 | 1.3  | 35.1          |  |
| 30 | 35.0 | 0.8  | 35.1          |  |
| 31 | 34.6 | 0.4  | 34.9          |  |
| 32 | 35.1 | 0.5  | 35.0          |  |
| 33 | 35.0 | 0.1  | 35.0          |  |
| 34 | 34.2 | 0.8  | 34.7          |  |

由表1可以得到塑性值测定平均值为34.5,标准偏差为0.71,移动极差平均值为0.78,期间精密 度标准差为0.70。

# 2.2 离群值检验

以Grubbs检验法对34组塑性值(x)数据进行 离群值检验,Grubbs统计量(G)计算如下:

$$G = \frac{|x_{\rm d} - \overline{x}|}{S} \tag{1}$$

式中, $x_d$ 为检测塑性值的可疑值[包括最大值( $x_{max}$ ) 和最小值( $x_{min}$ )],S为标准差。数据量n=34, 对 $x_{max}$  和 $x_{min}$ 作Grubbs判定,分别计算统计量:

$$G_{\rm max} = 1.778$$
  $G_{\rm min} = 2.318$ 

查 Grubbs 临 界 值 表,  $G_{0.05,34} = 2.799$ ,  $G_{max} < G_{0.05,34}$ ,  $G_{min} < G_{0.05,34}$ , 表明在95%置信概率下34组数据无离群值。

## 2.3 数据正态性和独立性检验

期间精密度条件下的检测结果按式(2)计算 移动极差(*M<sub>R</sub>*),按公式(3)计算期间精密度标准 差(*S<sub>R</sub>*)。

$$M_{R_i} = |x_{i+1} - x_i|$$
 (2)

$$S_{R'} = \frac{M_R}{1.128}$$
 (3)

检测结果按升序排列,按式(4)和(5)计算标 准变量 $\omega_i(S)$ 和 $\omega_i(M_R)$ ,通过 $p_i$ 数值表得到 $\omega_i$ 对应 的正态概率 $p_i$ 值。

$$\omega_i(S) = \frac{x_i - \overline{x}}{S} \tag{4}$$

$$\omega_i(M_R) = \frac{x_i - \overline{x}}{S_{R'}} \tag{5}$$

按式(6)一(8)计算正态统计量 $A^{2*}$ ,分别得到  $A^{2*}(S) 和 A^{2*}(M_R)$ ,计算参数见表2。

$$A_i = (2i - 1)[\ln p_i + \ln(1 - p_{n+1-i})]$$
(6)

$$A^{2} = -\frac{\sum_{i=1}^{n} A_{i}}{n} - n$$
 (7)

 $A^{2*} = A^2(1 + 0.75/n + 2.25/n^2)$ (8)

计算结果为:  $A^2(S) = 0.4612, A^2(M_R) = 0.4638, A^{2^*}(S) = 0.4723, A^{2^*}(M_R) = 0.4749_{\circ}$ 

由此可知, $A^{2*}(S)$ 和 $A^{2*}(M_R)$ 均小于1.0,表明 通过Anderson-Darling检验,在99%置信概率下, 检测系统接受测量结果正态性、独立性的假设。

### 2.4 控制限的确定和控制图的绘制

取期间精密度测量条件下的测定结果,按式 (9)和(10)计算x单值图行动上限(UCL)和行动下限(LCL)。

$$UCL = \overline{x} + 2.26\overline{M_R} \tag{9}$$

$$LCL = \overline{x} - 2.26\overline{MR} \tag{10}$$

按式(11) — (14) 计算指数加权移动平均 值(EWMA<sub>i</sub>,  $\lambda$ 取0.4) 和EWMA控制图行动上限 (UCL<sub>i</sub>)和行动下限(LCL<sub>i</sub>)。

橡胶工业

| 表2 $A^{*}(S)$ 和 $A^{*}(M_{R})$ 的统计计算参数 |      |                         |          |                     |                 |            |            |  |  |  |
|----------------------------------------|------|-------------------------|----------|---------------------|-----------------|------------|------------|--|--|--|
| 时序                                     | x升序  | A <sup>2*</sup> (S)计算参数 |          | $A^{2^*}(M_R)$ 计算参数 |                 |            |            |  |  |  |
|                                        |      | $\omega_i(S)$           | $p_i(S)$ | $A_i(S)$            | $\omega_i(M_R)$ | $p_i(M_R)$ | $A_i(M_R)$ |  |  |  |
| 1                                      | 32.9 | -2.318                  | 0.010    | -7.861              | -2.359          | 0.009      | -8.038     |  |  |  |
| 2                                      | 33.0 | -2.177                  | 0.015    | -21.587             | -2.215          | 0.013      | -22.057    |  |  |  |
| 3                                      | 33.1 | -2.036                  | 0.021    | -32.826             | -2.071          | 0.019      | -33.515    |  |  |  |
| 4                                      | 34.0 | -0.764                  | 0.222    | -24.193             | -0.778          | 0.218      | -24.529    |  |  |  |
| 5                                      | 34.0 | -0.764                  | 0.222    | -31.105             | -0.778          | 0.218      | -31.537    |  |  |  |
| 6                                      | 34.0 | -0.764                  | 0.222    | -35.647             | -0.778          | 0.218      | -36.111    |  |  |  |
| 7                                      | 34.0 | -0.764                  | 0.222    | -39.531             | -0.778          | 0.218      | -40.012    |  |  |  |
| 8                                      | 34.1 | -0.623                  | 0.267    | -42.889             | -0.634          | 0.263      | -43.375    |  |  |  |
| 9                                      | 34.1 | -0.623                  | 0.267    | -45.474             | -0.634          | 0.263      | -45.947    |  |  |  |
| 10                                     | 34.1 | -0.623                  | 0.267    | -50.824             | -0.634          | 0.263      | -51.353    |  |  |  |
| 11                                     | 34.1 | -0.623                  | 0.267    | -52.619             | -0.634          | 0.263      | -53.119    |  |  |  |
| 12                                     | 34.2 | -0.482                  | 0.315    | -53.798             | -0.490          | 0.312      | -54.254    |  |  |  |
| 13                                     | 34.3 | -0.341                  | 0.367    | -54.673             | -0.347          | 0.364      | -55.083    |  |  |  |
| 14                                     | 34.4 | -0.199                  | 0.421    | -51.144             | -0.203          | 0.420      | -51.414    |  |  |  |
| 15                                     | 34.4 | -0.199                  | 0.421    | -54.933             | -0.203          | 0.420      | -55.222    |  |  |  |
| 16                                     | 34.5 | -0.058                  | 0.477    | -50.505             | -0.059          | 0.476      | -50.647    |  |  |  |
| 17                                     | 34.5 | -0.058                  | 0.477    | -49.576             | -0.059          | 0.476      | -49.645    |  |  |  |
| 18                                     | 34.6 | 0.083                   | 0.533    | -44.690             | 0.085           | 0.534      | -44.624    |  |  |  |
| 19                                     | 34.7 | 0.224                   | 0.589    | -43.570             | 0.228           | 0.590      | -43.445    |  |  |  |
| 20                                     | 34.8 | 0.366                   | 0.643    | -38.554             | 0.372           | 0.645      | -38.317    |  |  |  |
| 21                                     | 34.8 | 0.366                   | 0.643    | -40.531             | 0.372           | 0.645      | -40.282    |  |  |  |
| 22                                     | 34.9 | 0.507                   | 0.694    | -35.358             | 0.516           | 0.697      | -35.013    |  |  |  |
| 23                                     | 34.9 | 0.507                   | 0.694    | -33.469             | 0.516           | 0.697      | -33.070    |  |  |  |
| 24                                     | 34.9 | 0.507                   | 0.694    | -31.751             | 0.516           | 0.697      | -31.312    |  |  |  |
| 25                                     | 35.0 | 0.648                   | 0.742    | -29.847             | 0.659           | 0.745      | -29.366    |  |  |  |
| 26                                     | 35.0 | 0.648                   | 0.742    | -31.065             | 0.659           | 0.745      | -30.565    |  |  |  |
| 27                                     | 35.1 | 0.789                   | 0.785    | -29.262             | 0.803           | 0.789      | -28.732    |  |  |  |
| 28                                     | 35.1 | 0.789                   | 0.785    | -27.142             | 0.803           | 0.789      | -26.579    |  |  |  |
| 29                                     | 35.2 | 0.931                   | 0.824    | -25.370             | 0.947           | 0.828      | -24.790    |  |  |  |
| 30                                     | 35.3 | 1.072                   | 0.858    | -23.865             | 1.091           | 0.862      | -23.277    |  |  |  |
| 31                                     | 35.3 | 1.072                   | 0.858    | -24.674             | 1.091           | 0.862      | -24.066    |  |  |  |
| 32                                     | 35.6 | 1.495                   | 0.933    | -5.726              | 1.522           | 0.936      | -5.388     |  |  |  |
| 33                                     | 35.7 | 1.637                   | 0.949    | -4.358              | 1.665           | 0.952      | -4.067     |  |  |  |
| 34                                     | 35.8 | 1.778                   | 0.962    | -3.264              | 1.809           | 0.965      | -3.019     |  |  |  |

$$EWMA_1 = x_1 \tag{11}$$

$$EWMA_i = (1 - \lambda) EWMA_{i-1} + \lambda x_i$$

$$(i=2,3,\cdots,n) \tag{12}$$

$$\text{UCL}_{\lambda} = \overline{x} + 3S_{R'}\sqrt{\frac{\lambda}{2-\lambda}} \tag{13}$$

$$LCL_{\lambda} = \overline{x} - 3S_{R'}\sqrt{\frac{\lambda}{2-\lambda}}$$
(14)

按下式计算 $M_{R}$ 图行动限(UCL<sub>M<sub>R</sub></sub>):

 $UCL_{M_R} = 3.27 \overline{M_R}$ (15)

代入数据,计算得到: x = 34.5, UCL = 36.3, LCL = 32.7, UCL<sub> $\lambda$ </sub> = 35.6 ( $\lambda$  = 0.4), LCL<sub> $\lambda$ </sub> = 33.5  $(\lambda = 0.4)$ , UCL<sub>M<sub>8</sub></sub> = 2.6°

与EWMA叠加的x单值图和MR图分别如图1和 2所示。由图1和2可知:xi和EWMA,处于各自的行 动限内,不存在趋势现象;MR均未超过行动上限, 且不存在趋势现象。

# 2.5 偏倚控制

实验室以厚度经过计量校准的铝片对系统 偏倚进行监控。铝片厚度参考值(RQV)为0.400 mm, 换算成塑性值为40.0, 校准温度为21 ℃, 快速塑性计测量温度为100 ℃,铝热膨胀系数为 2.32×10<sup>-5</sup> ℃<sup>-1</sup>, 计算得厚度变化值为7.33×10<sup>-4</sup> mm,可忽略不计。

快速塑性计11次测量结果(y)分别为42.1, 40.2,41.3,38.8,40.0,39.8,40.5,41.0,40.2, 39.0, 38.6, 平均值())为40.14,标准偏差为 1.08。统计量按下式计算:

37

36

35 塑性值

34

33

32

3.0





由度为n-1时的临界值,查双侧t分布表,t0 05.10= 2.228, t < t<sub>0.05.10</sub>, 表明在置信概率95%下RQV与样 本均值无差异,表明测量系统偏倚在统计上受控。

## 2.6 不确定度评定

从叠加EWMA的x单值图与M。图中均未发现 非随机分布的图形,表明测量系统仅受随机误差 影响的数据假设成立。对有参考值的稳定样品的 测定显示偏倚处于受控状态。因此在期间精密度 测量条件下,视2Sr/为不确定度评估值,表1中系列

一种导电硅橡胶及其生产工艺 由南通通 江橡胶制品有限公司申请的专利(公开号 CN 107652687A, 公开日期 2018-02-02)"一种 导电硅橡胶及其生产工艺",涉及的导电硅橡胶 配方为:甲基乙烯基硅橡胶 100,丁苯橡胶 12~15,造粒乙炔炭黑 20~80,白炭黑 2~20,

测量结果的不确定度评定为

$$U = 2S_{R'} = 1.4(k = 2)$$

质控样品塑性值测定结果报告为:34.5±1.4  $(k=2)_{0}$ 

## 3 结论

按 照 CNAS CL01: 2018<sup>[14]</sup> 和 RB/T 214-2017<sup>[15]</sup>的要求,强调实验室要持续进行质量控制, 采用Top-down技术评定不确定度可充分利用方法 确认、实验室内质控、实验室间比对、能力验证等 数据,通常比GUM法所得到的不确定度更为客观, 并具有统计学的严格性。

## 参考文献:

- [1] JJF 1059.1-2012,测量不确定度评定与表示[S].
- [2] CNAS-GL006:2018,化学分析中不确定度的评估指南[S].
- [3] CNAS-GL007:2018,电器领域不确定度的评估指南[S].
- [4] CNAS-GL009:2018,材料理化检验测量不确定度评估指南及实 例[S].
- [5] JJF 1059.2-2012,用蒙特卡洛法评定测量不确定度[S].
- [6] CNAS-GL022:2018,基于质控数据环境检测测量不确定度评定指 南[S].
- [7] GB/T 27411-2012,检测实验室中常用不确定度评定方法与表 示[S].
- [8] ISO/IEC 17025:2017, General Requirements for the Competence of Testing and Calibration Laboratories[S].
- [9] 林广义,孔令伟,井源,等.不同产地天然橡胶标准胶的微观结构和 性能[J]. 橡胶工业, 2018, 65(6):605-611.
- [10] 林广义,孔令伟,王佳,等.天然橡胶相对分子质量表征及其与加 工性能相关性研究[J]. 橡胶工业, 2018, 65(12): 1331-1337.
- [11] GB/T 15340-2008,天然、合成生胶取样及其制样方法[S].
- [12] GB/T 3517-2014,天然生胶 塑性保持率(PRI)的测定[S].
- [13] GB/T 3510-2006,未硫化胶 塑性的测定 快速塑性计法[S].
- [14] CNAS-CL01:2018,检测和校准实验室能力认可准则[S].
- [15] RB/T 214-2017,检验检测机构资质认定能力评价 检验检测机 构通用要求[S].

收稿日期:2019-04-05

端羟基硅油 0.1~1.2,硬脂酸或硬脂酸盐 0.15~0.3, 第一添加剂 6~8, 第二添加剂 4~5,双25硫化剂DBPH 1~2。该导电硅橡胶的 韧性和拉伸强度提高,具有良好的导电性能的同 时能够保持优异的物理性能。

(本刊编辑部 赵 敏)