改进型中乙烯基聚丁二烯橡胶性能的研究 Ⅱ. 玻璃化温度和动态力学性能

李 杨 (北京燕山石化公司研究院 102549) 刘慧明 顾明初 (大连理工大学化工学院 116012)

摘要 系统研究线形中乙烯基聚丁二烯橡胶(L-MVBR)、星形中乙烯基聚丁二烯橡胶(S-MVBR)、 线形 1,4-1,2-立构二嵌段中乙烯基聚丁二烯橡胶(L-B-MVBR)和星形 1,4-1,2-立构二嵌段中乙烯基聚 丁二烯橡胶(S-B-MVBR)的玻璃化温度及动态力学性能,发现 L-B-MVBR 具有较佳的动态力学性能,内 耗生热较低;相对分子质量和 1,2 结构质量分数的增大,星形支化结构均有利于嵌段 MVBR 产生微观 相分离结构,控制适宜的嵌段比可确保微观相分离结构更为显著。

关键词 聚丁二烯,中乙烯基聚丁二烯,动态力学性能

在对 4 种改进型中乙烯基聚丁二烯橡胶 (MVBR)生胶性能研究的基础上^[1],本实验 对线形中乙烯基聚丁二烯橡胶(L-MVBR)、 星形中乙烯基聚丁二烯橡胶(S-MVBR)、线 形 1,4-1,2-立构二嵌段中乙烯基聚丁二烯橡 胶(L-B-MVBR)和星形 1,4-1,2-立构二嵌段 中乙烯基聚丁二橡胶(S-B-MVBR)的玻璃化 温度及动态力学性能进行系统的研究,考察 乙烯基质量分数、1,2-聚丁二烯嵌段与 1,4-聚丁二烯嵌段的质量分数比(以 Q 表示,以 下相同)、硬段中乙烯基质量分数、相对分子 质量、偶联效率(以 G 表示,以下相同)对玻 璃化转变温度(T_g)和形态结构的影响规律。

- 1 实验
- 1.1 原材料

L-MVBR, S-MVBR, L-B-MVBR 和 S-B-

作者简介 李杨, 男, 33 岁。高级工程师。1988 年毕 业于大连工学院(现大连理工大学)高分子材料专业获硕士 学位。现在大连理工大学精细化工国家重点实验室攻读在 职博士学位,主要从事锂系聚合物和通用树脂的开发研究, 曾获北京市科技进步三等奖,已发表论文 20 余篇,申请中 国发明专利 7 项。 MVBR的制备方法参见文献[2~4],星形 MVBR采用四氯化硅或四氯化锡为偶联剂, 偶联效率采用GPC分析;嵌段MVBR的结 构为1,4-1,2-立构二嵌段聚丁二烯,微观结 构采用红外光谱分析。

1.2 性能测试

(1)玻璃化转变温度的测定。采用日本 Rigaku DSC-DTA 差示扫描量热仪进行测 试,升温速度为 20 [℃]°min⁻¹,走纸速度为 10 mm°min⁻¹, DSC 的灵敏度为 4, DTA 的灵敏 度为 100。

(2)动态力学性能的测定。采用日本 Rheovibm DDV-IIIEA 型粘弹谱仪进行测 试,测试频率为11 Hz。

2 结果与讨论

2.1 玻璃化转变温度的研究

2. 1. 1 L-MVBR

对不同相对分子质量(对应不同的特性 粘度[η])、不同1,2-结构质量分数[以 $\omega(1,2-)$ 表示,以下相同]的 L-MVBR 的 T_g 进行研究, T_g 的计算值 $T_g(c)$ 根据 Bahary 关系式计算:

$$T_{\rm g} = 91 V - 106$$

式中 V 为聚丁二烯中乙烯基质量分数。计 算结果如表 1 所示。由表 1 可见, T_g 随着 ω (1, 2-)的增大而增高,不随[η] 的变化而变 化,故相对分子质量大小对 T_g 无显著影响。 实 验 结 果 符 合 Bahary 关 系 式, T_g 与 ω(1,2-)呈线性关系。

2. 1. 2 S-MVBR

对 S-M VBR 偶联之前聚丁二烯数均相 对分子质量均为 70 000、ω(1,2-)相近、G 不 同的一组 S-M VBR 的 T_g 进行研究,结果如 表 2 所示。

表1 结构对 L-MVBR 的 T_g 的影响

项目	样品编号							
	1	2	3	4	5	6	7	8
$[\eta] / (dL^{\circ}g^{-1})$	236.8	182.3	297.1	316.0	270.4	294.3	188.3	266.8
ω(1, 2-)	0. 380	0.410	0. 452	0. 486	0. 497	0.548	0. 577	0. 594
<i>т _в</i> / °С	- 73.5	-70.0	-65.0	-64.0	- 59. 5	— 5 9. 0	- 54 . 2	- 52. 7
$T_{\rm g}({ m c})/\degree{ m C}$	-71.4	- 68.7	- 64 . 9	- 61.8	- 60. 8	- 56. 1	- 53 . 5	- 51.9

表 2 结构对 S-MVBR 的 T_g 的影响

样品编号	ω(1, 2-)	$[\eta] / (dL^{\circ}g^{-1})$	G/ $%$	$T_g \ ^{\circ}\mathbb{C}$
1	0. 429	95.3	0	-65.0
2	0. 431	107.8	15.4	- 69.8
3	0. 420	127.4	37.2	- 69.0
4	0. 432	144.1	48.3	-62.0

由表 2 可见,随着 G 的增大, T_g 有所增 高,当 G 最大时, T_g 达到最高值。 T_g 的高 低取决于高聚物链端基对有效自由体积贡献 的大小,偶联后高聚物端基数减少,导致 T_g 增高。G 越大、生成的星形产物越多,这种 作用越强, T_g 升幅越大。

2. 1. 3 L-B-MVBR

对不同数均相对分子质量 M_n 、不同硬 段 1, 2-聚丁二烯嵌段质量分数[以 ω (H)表 示,以下相同] Q 和不同硬段 1, 2-聚丁二烯 嵌段中 1, 2-结构的质量分数[以 ω (H1, 2-) 表示,以下相同] 的 L-B-MVBR 的 T_g 进行研 究,结果如表 3 所示。由表 3 可见,不同的分 子结构导致不同的形态结构, L-B-MVBR 因 M_n , Q 和 ω (H1, 2-)的不同,产生不同的形态 结构,或表现为单一 T_g 的均相结构,或表现 为两个 T_g 的相分离结构。各影响因素分析 如下: ① M_n 的影响: 当 ω (H1, 2-)为 0.88 时, M_n 为 200 000 和 150 000 的样品全部分

相,具有两个 Tg(如第1和3组样品所示), 而 M_n为 100 000 的样品只有当 O 接近1 才 产生相分离结构(如第5组样品所示)。当 ω(H1, 2-)为 0.78 时, M_n为 200 000 的样品 全部分相,具有两个 T_g(如第2 组样品所 示),而 M_{n} 为150000的样品只有当Q接近 1时才产生相分离结构(如第4组样品所 示)。可见提高相对分子质量有利于微观相 **分离结构的产生**。②ω(H1, 2-)的影响:当 M_n为 150 000 时, ω(H1, 2-)为 0.88 的样品 全部分相,具有两个 Tg(如第3 组样品所 示), 而 ω(H1, 2-) 为 0.78 的样品只有当 Q 接近1时才产生相分离结构(如第4组样品 所示)。可见提高 $\omega(H1, 2-)$ 有利干微观相 分离结构的产生。③Q的影响:对于低 Mn、 低 ω(H1, 2-)的 L-B-M VBR, 当 Q 接近 1 时 产生相分离结构,如第4和5组样品所示。 第5组样品的 T_g 值和 DSC 谱示意图(如图 1 所示)典型地反映了 O 对相分离结构的影 响:曲线1呈现典型均相聚合物的特点,T_g **实测值**—39.0 ℃与 Bahary 计算值—38.8 ℃ 非常接近;曲线 3 和 4 所对应的样品 Q 接近 1(0分别为 1.41 和 0.84), 其相分离程度较 高, DSC 谱图呈现两个较为明显的相转变平 台,且转变区较窄:曲线2所对应的样品 0 为2.50,不具有明显的相分离结构,DSC谱图

样品编号	$M_{\rm n}$	ω(1,2-)	ω(H)	Q/ %	ω(H1, 2-)	$T_{\rm g}$ /°C
1	200 000	0. 572	0. 620	1.63	0.88	-94.0/-20.0
		0. 527	0. 564	1.29		-98. 5/-27. 5
		0. 432	0. 446	0.81		-97.5/-21.7
2	200 000	0.653	0.811	4.29	0. 78	-99.5/-50.0
		0. 499	0. 597	1.48		- 89. 0/ - 33. 0
		0.411	0. 474	0.90		-95.0/-33.7
		0.317	0. 344	0.52		-96.5/-28.0
3	150 000	0.715	0. 795	3.88	0.88	-94.0/-40.0
		0.567	0. 606	1.54		-84.0/-11.0
		0. 445	0. 457	0.84		-93.0/-11.5
		0.360	0. 354	0.55		-94.0/-26.0
4	150 000	0. 577	0. 714	2.50	0. 78	-74.0
		0. 494	0. 597	1.48		- 88. 0/ - 38. 0
		0.416	0. 487	0.95		-88.0
5	100 000	0.738	0. 825	4.71	0.88	- 39 . 0
		0.648	0.714	2.50		-58.0
		0. 544	0. 585	1.41		-93.0/-32.0
		0.440	0. 457	0.84		-92.0/-29.0
		0. 325	0. 315	0.46		- 89.0

表 3 结构对 L-B-MVBR 的 Tg 的影响

1-0. 825; 2-0. 714; 3-0. 585; 4-0. 457; 5-0. 315

呈现一个很宽的相转变区域,且相转变平台 呈坡状, T_g 实测值 -58.0 [℃]介于硬、软段 T_g 值(分别为 -38.8 和 -98.0 [℃])之间,与 Bahary 计算值 -47.0 [℃]也相差较大。对第 2 组样品的溶液性能进行研究,结果如图 2 所示。由图 2 发现,当 Q 为 0.90 时所对应 的特性粘度[η]值最大。由上述研究已知此 组样品中Q 为0.90的样品相分离结构最

佳, 可见 L-B-MVBR 的相分离程度越高, [η] 越大。

2. 1. 4 S-B-MVBR

对 S-B-MVBR的 T_g 进行研究, 结果如 表 4 所示。由表 4 可见: 当样品 ω (H1, 2-)为 78%时(第1组样品), 没有相分离结构, S-B-MVBR 所反映出的特性与 S-MVBR 相似。 当样品 ω (H1, 2-)为 0. 88 时(第2组样品), 具有一定的相分离结构, S-B-MVBR 的 DSC 谱图(图1中第2条曲线)表现为较宽的 T_g 转变区域, 由于相分离结构不完全, 在DSC

表4 结构对S-B-MVBR 的 Tg 的影响

项目	第1组样品					第2组样品					
ω(H1, 2-)			0.	78					0.88		
$[\eta] / (dL^{\circ}g^{-1})$	100.0	123.3	130.1	145.1	166.0	160.7	88.7	97.2	108.4	107.8	114.9
G / $\frac{0}{0}$	0	12.2	34.9	52.0	63.3	54.3	0	7.7	16.5	23.4	30.2
T _g ∕°C	— 76 . 8	- 78.5	-75.0	-71.5	-70.0	-70.0	- 90.0	- 88.5	- 89.4	- 87.5	-91.5

注:样品 M_n为 90 000。

谱图上软段 T_g 转变较明显,并且 G 越高,软 段 T_g 转变平台越陡,相转变区域越窄,表明 偶联效率的增大、支化产物的增多有利于提 高 S-B-MVBR 的相分离程度。

2.2 动态力学性能的研究

2.2.1 生胶动态力学性能的研究

L-MVBR(1 号样品)、L-B-MVBR(2 和 3 号样品)生胶的粘弹谱图分别如图 3 和 4 所 示。由图可见: 样品 1 表现为典型的均相聚 合物的特点, 内耗(tan δ 、损耗模量(E'')的 谱图上 T_g 转变区域单一且窄小。由动态法 (粘弹谱法)测得的 T_g 高于静态法(DSC 法) 测得的 T_g , 结果如表 5 所示。样品 3 表现为 典型相分离结构嵌段聚合物的双峰特征, tan δ 谱图和E''谱图上的 T_g 转变均为双峰,

注同图 3

表 5 结构对 MVBR 生胶动态力学性能的影响

项	目	L-M VBR	L-B-MVBR	L-B-MVBR
M _n		250 000	200 000	200 000
ω(1, 2-)		0. 448	0. 447	0. 432
Q' %		—	53.1	44.6
ω(H1, 2	-)	-	0.78	0.88
$T_{\rm g(DSC)}/$	°C	-65.0	-92.0/-	-97.5/-21.7
$T_{\mathrm{g(tan\delta)}}/$	°C	- 54 . 2	- 49.0	-92.7/-7.1
$T_{g(E')} $	2	-61.2	— 76 . 2	-94. 5/-15. 2

且峰形窄小。样品 2 粘弹谱图没有表现出典 型相分离结构嵌段聚合物的双峰特征, tan δ 谱图和E''谱图上的 T_g 转变区域为较宽的单 峰,说明样品 2 的硬、软段相分离不完全。

2.2.2 硫化胶动态力学性能的研究

L-MVBR(1 号样品)、L-B-MVBR(2 号 样品)硫化胶的粘弹谱图分别如图 5 和 6 所 示。由图可见: L-M VBR 表现为典型的均相 聚合物的特点, L-B-M VBR 粘弹谱图上 *T*_g 转变区域为较宽的单峰说明其硬、软段相分

图 5 L-MVBR 的粘弹谱示意图

离不完全。同时发现 L-B-MVBR 的 tan δ谱 图和E''谱图对应的 T_g 值相差较大, tan δ 谱 图上所对应的 T_g 值为−27.2 °C, 与硬段 $[\omega(1,2-)约为0.78]$ 所对应的 T_{g} 值 [-35.0 ℃(DSC 实测值)] 相近, 表明 tan δ 谱更能反映出 L-B-MVBR 硬段的特征, E''谱 所对应的 T_{g} 值为一85.2 °C, 与软段 $[\omega(1, 2-)$ 约为0.10] 所对应的 T_{g} 值 [-99.6 ℃(DSC 实测值)]相近,表明 E["]谱 更能反映出 L-B-M VBR 软段的特征。进一 步比较两者的粘弹谱图,发现在 0 ℃附近 L-B-M VBR 较 L-M VBR 具有更大的内耗[如表 6 中 tan § 所示], 而在 50 [℃]附近 L-B-MVBR 较 L-MVBR 具有更小的内耗 [如表 6 中 tan & 所示],表明 L-B-MVBR 与 L-MVBR 相比抗湿滑性能更佳、内耗生热更低的特 点。

表 6 结构对 MVBR 硫化胶动态力学性能的影响

项目	L-M VBR	L-B-MVBR		
ω(1, 2-)	0. 362	0. 376		
ω(H 1, 2-)	—	0. 78		
$\tan \delta_1$	0.079	0.098		
$\tan \delta_2$	0.080	0.058		
$T_{\rm g(DSC)}$ /°C	-74.0	- 97 . 0/ -		
T _{g(tan ð} ∕°C	- 59. 1	—/ — 27. 2		
<i>T</i> _{g(<i>E</i>″∕ ℃}	- 65.2	- 85. 2/ -		

注:样品 M_n均为 200 000。

3 结论

(1) T_{g} 随着 $\omega(1, 2)$ 的增大而增大, M_{n} 的大小对 T_{g} 无显著影响; 星形支化结构导 致 T_{g} 增大。

(2) M_n 的增大、ω(H1, 2-)的增大、星形 支化结构均有利于嵌段 MVBR 产生微观相 分离结构,控制适宜的 Q 可确保微观相分离 结构更为显著。

(3)L-B-M VBR 较 L-M VBR 具有更佳的 动态力学性能,内耗生热较低。 李 杨,刘慧明,顾明初.改进型中乙烯基聚丁二烯橡 胶性能的研究,I.生胶性能的研究.橡胶工业,1997, 44(11):643~648

参考文献

- 2 李 杨.改进型中乙烯基聚丁二烯橡胶的研制,I.微 观结构和序列分布.合成橡胶工业,1996 19(4):206
- 3 李 杨. 改进型中乙烯基聚丁二烯橡胶的研制, II. 中 乙烯基聚丁二烯橡胶的合成. 合成橡胶工业, 1996, 19 (6): 342
- 4 李 杨. 改进型中乙烯基聚丁二烯橡胶的研制, III. 立 构嵌段中乙烯基聚丁二烯橡胶的合成. 合成橡胶工业, 1997, 20(2):83

收稿日期 1997-09-21

Study on Properties of Modified MVBRs Part 2. Study on T_g and Dynamic Mechanical Properties

Li Y ang

(Research Institute of Beijing Yanshan Petrochemical Co. 102549)

Liu Huiming and Gu Mingchu (Dalian University of Science and Technobgy 116012)

Abstract The T_g and the dynamic mechanical properties of four kinds of modified medium vinyl polybutadiene rubbers (MVBRs) including linear MVBR (L-MVBR), star MVBR (S-MVBR), linear 1, 4-1, 2-stereodiblock MVBR (L-B-MVBR) and star 1, 4-1, 2-stereodiblock MVBR (S-B-MVBR) were systematically investigated. The results showed that L-B-MVBR had better dynamic mechanical properties and lower heat build-up; the star-branched structure and the increase of molecular weight and 1, 2-polybutadiene content were benificial to form the microphase seperated structure; and the appropriate ratio of the 1, 2-polybutadiene block to the 1, 4-polybutadiene block resulted in a more remarkable micro-phase seperated structure.

Keywords polybutadiene, MVBR, dynamic mechanical properties

成都汇丰化工厂超细活性氧化锌 投入生产

由成都汇丰化工厂与中国科技大学联合 开发出的超细活性氧化锌日前投入生产。该 厂采用液相沉淀法生产的超细活性氧化锌、 粒径小于 20 nm,氧化锌质量分数超过 0.997,锰的质量分数小于 2×10^{-6} ,比表面 积大于 90 m²·g⁻¹,这些指标均达到并超过 德国拜耳公司产品的标准。

目前,超细活性氧化锌在国外已普遍应 用于橡胶产品生产中。据专家分析,国内橡 胶轮胎生产企业采用超细活性氧化锌,将具 有很好的经济效益。

(摘自《中国化工报》,1998-01-02)

大陆公司加强胶带生产

美国《橡胶和塑料新闻》1997 年 11 月 24 日 8 页报道:

大陆公司为其在德国的子公司 Conti-Tech 输送带公司的输送带连续生产工艺投 资 530 万美元。Conti-Tech 最近有一台四辊 压延机投入生产,它能够压延 2.25 m 宽的胶 带带芯材料。这台 Berstorff 和 Conti 联合研 制的带芯连续生产机械叫作 Conti Cama,它 与辅助装置(特别是蓄料器)一起,使得带体、 隔离胶和覆盖胶可在同一台机器上加工。使 用现有双面硫化的 DOBA 连续硫化机,便可 以连续生产无接头的输送带。