MGBCV 型矿用阻燃整芯输送带 带面修复专用胶的研制

贾剑珉 葛长淮

(北京北方翔远橡胶机械有限责任公司 100039)

摘要 MGBCV 型矿用阻燃整芯输送带带面修复专用胶以聚氨酯为基料,配合使用聚磷酸铵、钛酸酯和氧化铝,以提高其阻燃性和与带芯的粘合强度,并克服了聚氨酯表面摩擦因数小和耐磨性差的缺点。试验结果表明,使用该修复胶修复的输送带的性能符合 MT 147—92 标准要求,而且修复胶成本低,可带来明显的经济效益。

关键词 二苯基甲烷二异氰酸酯, 聚碳化二亚胺 四辛基钛二(二月桂基亚磷酸酯基)钛酸酯, 整芯运输带, 阻燃, 带面修复胶

在煤矿井下运输中、PVC全塑或橡塑阻 燃整芯输送带的尼龙编织带芯承拉力强,使 用寿命在 10 年以上。然而, PVC 带面胶胶 层厚度为 $1.5 \sim 2.0 \text{ mm}$, 耐磨性差, 使用寿 命仅为1~2年,带芯带面寿命比例严重失 调。当带面保护胶层磨损,带芯出现裸露时, 编织体带芯很易磨毛脱落甚至断裂。为了保 证生产的有序进行,煤矿对带芯出现裸露的 输送带要及时加以更换,更换下来的输送带 一般另作他用或作报废处理。假如能恢复输 送带的保护胶层,则上述报废的输送带仍可 继续使用,且强度基本保持不变。显然,修复 阻燃整芯输送带有极大的现实意义。90年 代以来, 试图修复阳燃整芯输送带的煤矿很 多, 不少厂家也开发了多种以 CR 为基料的 修复胶。然而,由于软 PVC 胶层表面的粘性 差、胶料的高粘合强度、高抗剪切、高耐磨性、 阳燃性、抗静电性等指标很难在 CR 中得到 统一, 致使修复工作难以进行。本文所述 M GBCV 型修复胶是以聚氨酯为基料,同时 加入一定量的偶联剂、双向溶解混合溶剂等 而得到的一种高粘合强度、高抗剪切、高耐 磨、抗静电、阻燃、常温固化、固化快的双组分 聚氨酯涂覆胶。

1 实验

1.1 主要原材料

二苯基甲烷二异氰酸酯 (M DI), 上海新光化工厂产品; 聚碳化二亚胺, 日本进口; A-2接枝橡胶, 日本进口; 3, 3-二氯-4, 4-二苯基甲烷二胺(MOCA), 苏州前进化工厂产品; 聚磷酸铵, 天津大港油墨厂产品; 乙酸乙酯混合溶剂, 自制; 其余原材料为市售工业品。

1.2 试样制备

1.2.1 甲组分的制备

在烘干的三口瓶上装上搅拌器、温度计,加入液体 M DI 和聚碳化二亚胺、搅拌溶解。分析游离一N CO 的质量分数后备用。

1.2.2 乙组分的制备

(1)烘干。A-2 接枝橡胶的烘干条件为 (90~100) [©] × (90~120) min; 聚磷酸铵的烘干条件为 100 [©] × (90~100) min; 吸湿剂与摩擦剂的烘干条件为 200 [©] × 60 min。

(2)混合。在三口瓶上装上搅拌器,将烘干冷却的 A-2 接枝橡胶、聚磷酸铵、吸湿剂、摩擦剂、乙炔炭黑倒入瓶中,搅拌均匀。然后依次添加钛酸酯偶联剂、磷酸三氯乙酯

作者简介 贾剑珉, 男, 38 岁。工程师。1981 年安徽师范学院毕业。从事 PVC 阻燃胶带的修复技术研究。

(TCEP)和一定量乙酸乙酯混合溶剂,搅拌成糊状。在另一个三口瓶上装上搅拌器,将混合溶剂倒入瓶中,加入称量好的 MOCA,搅拌、溶解。然后将已混合成糊状的胶浆加入,搅拌均匀,形成乙组分。

1.2.3 胶料配制

胶料甲乙两组分的质量比为 1:1.365,使用时按比例加入容器内快速搅拌 10 min即可。配好后使用期为 1~2 h。在操作中,若停放时间稍长,胶料粘度稍大,可适当添加混合溶剂稀释。

1.3 异氰酸酯质量分数的测定^{1]} 异氰酸酯质量分数按下式进行计算:

$$\omega$$
(异氰酸酯)= $\frac{(B-S)NE}{m \cdot 1000}$

式中 $B \longrightarrow$ 空白滴定消耗盐酸溶液的体积, mL;

S ──样品滴定消耗盐酸溶液的体 积, mL;

N —— 盐酸的摩尔浓度, $mol \, ^{\circ}L^{-1}$; E —— M DI 相对分子质量, $g \, ^{\circ}mol \, ^{-1}$; m —— 试样质量, $g \, ^{\circ}$

1.4 性能测试

试样性能按 MT 147-92 标准进行测

itt.

2 结果与讨论

2.1 物理性能测试结果与外观描述

该胶分组分可贮存 6 个月, 配好后使用期为 2 h。胶料外观为黑色粘稠非牛顿流体,粘度随配胶时的空气湿度、温度、搅拌时间的不同而发生变化, 大致范围为 $7 \sim 12$ Pa°s。挥发分质量分数约为 12%, 固化后的邵尔 A型硬度为 $60 \sim 75$ 度。

M GBCV 专用修复胶的物理性能测试结果见表 $1 \sim 3$ 。

2.2 聚碳化二亚胺及无机吸湿剂的使用

—NCO 极易与空气和物料中的水分发生反应,反应时放出二氧化碳气体,当涂层厚度在 0.5 mm 以上时,胶层易产生气泡与针孔。

表 1 导电性能

	表面电	是否合格	
	上胶面	下胶面	走自口怕
1	1. 5× 10 ⁸	1. 1×10 ⁸	合格
2	1. 0×10^{8}	1. 4×10^{8}	合格
3	2.1×10^{8}	1. 5×10^8	合格

表 2 辊筒摩擦试验

	试验部位					
坝 日	上胶面	上胶面	上胶面	下胶面	下胶面	下胶面
是否吹风	是	否	是	否	是	否
最大负荷/ N	343	343	343	343	343	_
试验时间/ min	52	6	7	9	8	_
辊筒表面最高温度/ ℃	257	253	256	267	261	_
有无火星	无	无	无	无	无	_
是否合格	合格	合格	合格	合格	合格	_

表 3 酒精喷灯燃烧性能

自熄时间/ s	有覆盖层		剥去覆盖层		是否
	有焰	无焰	有焰	无焰	合格
平均值	0. 63	0. 96	1. 29	1. 50	合格
最大单值	0. 87	1. 32	2. 89	3. 14	合格

试验表明,在液体 MDI 中加入一定量的 聚碳化二亚胺,且在乙组分中添加一定量无 机吸湿剂后,可有效地消除胶层中的气泡和 针孔,从而放宽对空气湿度和被涂物表面干燥程度的要求。其原因在于添加物与水反应的速度大于—NCO 与水反应速度,并且添加

物与二氧化碳气体易发生反应,反应产物不影响胶层的物理性能[1]。

2.3 阻燃剂聚磷酸铵的使用

磷化合物受热时可生成焦磷酸,促进碳化层的生成,达到阻燃效果。聚氨酯的氧指数为 17.3,达到自熄效果时的磷质量分数为 1.5%,磷氯综合质量分数为 (1+10)%。该胶所用聚磷酸铵,磷质量分数达 32%,以添加质量比为 18%计,胶料中磷质量分数为 5.76%,已达到使胶料自熄的标准,另外其受热生成的氮气也有隔绝空气的作用。试验表明,聚磷酸铵的阻燃效果优于常规三氧化二锑体系。采用聚磷酸铵,不但胶料物性有所提高,而且降低了胶料成本(聚磷酸铵的价格仅为三氧化二锑体系的 1/3)。TCEP 也参与阻燃,但在该胶中主要起增塑作用[2]。

2.4 硬质摩擦填料活性氧化铝的使用

聚氨酯橡胶有自润滑性,表面摩擦因数小。在修复输送带的工业性试验中,当皮带机倾斜度大于 12°时,物料即有下滑现象。另外,由于聚氨酯橡胶硬度低,表面柔软,当皮带通过辊筒时,强大的压力和剪切力易使胶层发生卷曲、磨损。活性氧化铝的添加,可增加胶层硬度和表面粗糙度,即使皮带机倾斜度在大于 15°时,物料也不会下滑。活性氧化铝具有较强的吸附能力,与胶料的亲合性较好,不易从胶层中脱离。活性氧化铝吸水后成为不溶于水的水合氧化铝,具有一定的辅助阻燃效果。另外活性氧化铝还具有吸收氯化氢的作用。试验表明,采用活性氧化铝作为摩擦填料能得到较好的综合效果。

2.5 钛酸酯偶联剂的使用

为使无机填料能与聚氨酯良好地结合, 胶料采用四辛基钛二(二月桂基亚磷酸酯基) 钛酸酯作为偶联剂,并配合其它助剂。试验 证明, 胶料与 PVC 表面的粘合强度提高, 胶 层的耐磨性也有改善。

2.6 固化

胶料采用MOCA加辛酸亚锡固化,当

 $-NH_2$ 与-NCO 质量比为 0.85 时可常温固化。固化分初固化和后固化两步进行。初固化时间可通过改变辛酸亚锡用量进行调节,辛酸亚锡用量最多不超过 MDI 的 2%,否则会影响胶料对被粘物表面的浸润与渗透¹¹,导致表面起皮和有气泡(参见表 4)。后固化条件为80 $^{\circ}$ ×(4 $^{\circ}$ 6)h或(25 $^{\circ}$ 30) $^{\circ}$ ×24 $^{\circ}$ 4。试验表明,两种后固化方式的胶料物理性能相差不大。

表 4 MGBCV 修复胶的初固化与固化效果

		试 验	序号	
-	1	2	3	4
固化剂用量/ %				
MOCA	8. 6	8. 6	8. 6	8. 6
辛酸亚锡	0	0. 15	0. 2	0. 3
环境条件				
空气相对湿度/ %	30	30	30	30
温度/ ℃	25	30	35	35
固化效果				
是否表面起皮	是	是	否	否
是否有气泡、针孔	是	是	是	否
固化时间/ h	4~6	3 ~ 4	2. 5~	1. 5~
			3. 5	2

3 结论

(1)使用以聚氨酯为基料配制成的 MG-BCV 专用胶修复的输送带,其性能完全符合 MT 147-93 标准,MGBCV 专用胶能够满足煤矿修复 PVC 阻燃整芯输送带以及其它类型输送带的需要。

(2)MGBCV 胶料涂层耐磨性能优异,涂层厚度小于 0.5 mm 时,使用寿命即与国产PVC 胶面的新输送带带面相近,修复成本较低,具有较高的经济效益。

参考文献

- 傅明源, 孙酣经. 聚氨酯弹性体及其应用. 北京: 化学工业出版社, 1994. 37~38, 76, 167~170, 203
- 2 战凤昌,李悦良. 专用涂料. 北京:化学工业出版社. 1988. 293~297

收稿日期 1997-03-20