活性剂 T44和 T311在轮胎内胎中的应用

章亦军 黄 勤 陶建伶

[杭州中策橡胶(股份)有限公司 310016]

活性剂 T44和 T311是台湾统景公司产品, 其主要成分是纤维木质素及添加剂的混合物。据资料介绍,该助剂为天然橡胶及合成橡胶的硫化活性剂,具有高效、安全、无公害的特点,可缩短硫化时间,提高硫化效率。根据活性剂 T44和 T311的特性,我们在轮胎内胎配方中进行了试验,其目的是缩短内胎硫化时间。现将试验结果汇总如下,供同行借鉴。

1 活性剂 T4和 T311的化学性质

活性剂 T4的外观为白色粉末,密度为 1.25Mg・m⁻³,pH 值为 9—10;活性剂 T₃₁₁ 外观为白色粉末,密度为 1.24Mg・m⁻³,pH 值为 10—11。

2 在轮胎内胎配方中的小配合试验

轮胎内胎原生产配方为: 天然橡胶 70; 合成橡胶 30; 氧化锌 4; 硬脂酸 2.5; 促进剂 1.71; 硫黄 1.8; 防老剂 2.1; 炭黑 40; 软化剂 15; 其它 16。试验配方为在生产配方中加活性剂 T44和 T311各 0.3 份。

试验采用国产 $11^{\#}$ 密炼机制备母胶,在 开炼机上加活性剂 T_{44} 和 T_{311} 及硫黄。胶料硫 化特性见表 1,硫化胶性能如表 2 所示。

		FI 122-1 1	M3 48 10 14 12		
方案	流变仪数	据(143℃)	门尼焦烧时间(120℃)		
	t_{10} .min	t_{90} , min	min		
试验配方	6.50	11.00	23		
生产配方	8.75	17.50	36		

表 1 小配合胶料的硫化特性

=	•	나 모기스 마늘에 사내는 101년 1년 1년 1년 1년 1년 1년 1년
₹	2	小配合胶料的物理机械性能对比

项 目	·-	试 验	配方		生	产配	方
硫化时间(143℃),min	10	15	20	25	15	20	25
邵尔 A 型硬度,度	54	58	57	56	53	55	54
300%定伸应力,MPa	4.2	5.2	5.4	5.5	4.6	5.0	5.6
拉伸强度,MPa	22.0	22. 2	19.7	21. 2	21.1	21.3	21.7
扯断伸长率,%	700	640	600	610	670	650	640
扯断永久变形,%	30	30	30	29	25	25	25
撕裂强度,kN・m ⁻¹	_	116	_		115		_

从表1可以看出,加入活性剂 T44和 T311后,胶料焦烧时间明显缩短,硫化速度提高。

表 2 结果表明,加入活性剂 T_{44} 和 T_{311} 后,硫化胶硬度、拉伸强度均增大,说明硫化胶的交联密度有所提高。

3 车间大料试验

根据小配合试验结果,我们对配方中活 性剂 T4及硫黄用量进行了适当调整,调整 后的硫黄用量为 1.6 份, T_{44} 用量为 0.25 份,并在车间进行了扩试,以考察其工艺性能及成品性能。试验在国产 $11^{\#}$ 密炼机上进行,活性剂 T_{44} 和 T_{311} 在开炼机上加入后出片。

3.1 硫化速度对比

143 °C 流变仪试验结果如下:试验配方胶料 $t_{10}=5$. 70min, $t_{90}=12$. 75min;生产配方胶料 $t_{10}=7$. 25min, $t_{90}=16$. 50min。改进后的试验配方显示 t_{10} 和 t_{90} 接近于生产配方,表明话

当减少活性剂 T44及硫黄用量可以改善胶料的操作安全性。

3.2 物理机械性能对比

试验配方和生产配方车间大料的物理机

械性能如表 3 所示。从表 3 不难看出,大料试验结果与小配合试验结果基本吻合。

3.3 成品硫化时间的确定

根据胶料的特性, 在成品试制中采用不

表 3	车间大料的物理机械性能试验结果

项 目		试验配	方	生	产配	方
硫化时间(143℃),min	10	15	20	10	15	20
邵尔 A 型硬度,度	57	60	60	52	58	57
300%定伸应力,MPa	5.2	6. 3	6. 5	3.5	5.1	5. 2
拉伸强度,MPa	19.9	20.4	21. 1	19.5	21. 4	20.3
扯断伸长率,%	620	590	590	740	650	620
扯断永久变形,%	28	29	27	28	27	22
撕裂强度,kN·m ⁻¹	113	112	_	103	108	-

同的硫化时间来考察成品的物理机械性能变化。成品规格为 4.50-16 内胎,试验结果如表 4 所示。

表 4 不同硫化时间的 4.50-16 内胎的 物理机械性能

ì	生产配方		
3	4	5	6
58	59	58	57
6.7	6.2	5.8	5.5
19.6	20.4	20.5	19.6
587	611	647	590
25	28	29	20
	3 58 6.7 19.6 587	3 4 58 59 6.7 6.2 19.6 20.4 587 611	58 59 58 6.7 6.2 5.8 19.6 20.4 20.5 587 611 647

注:该规格内胎的标准硫化时间为6min。

试验结果表明,用试验配方试制的内胎, 3min 时即已达到生产配方 6min 时的物理机 械性能水平,且当硫化时间延长至 4 和 5min 时,其物理机械性能相对稳定,说明该配方具 有优良的抗硫化返原性能。为了保证完全达 到正硫点,硫化时间应确定为 4min。通过相 同的方法,我们确定了其它规格内胎的硫化时间。由此可见,通过应用活性剂 T_{44} 和 T_{311} ,能够在不增添设备的基础上大大提高内胎产量。

4 结论

- (1)活性剂 T_{44} 和 T_{311} 能够加快硫化速度,提高硫化交联度。利用其特性,能显著提高硫化效率。
- (2)采用活性剂 T44和 T311后,通过调整配方,可使配方成本保持不变或略有降低,具有一定的经济效益。
- (3)加入活性剂 T44和 T311后,配方中硫 黄和促进剂用量应适当调整,否则容易导致 胶料早期焦烧。
- (4)活性剂 T44和 T311适用于薄制品如内胎等的高温短时间硫化。应用于胎面等厚制品的技术尚有待于进一步探讨。

收稿日期 1994-09-28

征订启事

《英汉橡胶词汇大全》尚有部分余书,现以每本 16 元的优惠价出售,欲购者请向编辑部索取订单。