抗硫化返原剂 WK901 在全钢载重 子午线轮胎中的应用

黄义钢 林向阳 逢 华

(青岛双星轮胎工业有限公司 山东 胶南 266400)

摘要:研究抗硫化返原剂 WK901 在全钢载重子午线轮胎上三角胶中的应用效果,并与抗硫化返原剂 Perkalink® 900(简称 PK900)进行对比。结果表明 与 PK900 一样 加入 WK901 可明显提高胶料的抗硫化返原性 同时对胶料的 加工安全性、硫化速率没有影响:两种抗硫化返原剂对硫化胶物理性能的影响基本相同:WK901 用量在 0.7 份时胶料 的综合性价比最优。

关键词 抗硫化返原剂 流化返原 全钢载重子午线轮胎 三角胶

中图分类号:TO330.38 +7;U463.341 +.6 文献标识码:B 文章编号:1006-8171(2005)01-0016-04

抗硫化返原剂是一种新型功能性橡胶助剂, 国内外不少橡胶助剂生产商在不断研究开发,已 经有不少产品问世。在目前已推广应用的产品 中 以抗硫化返原剂 Perkalink® 900(简称 PK900) 应用效果最好。据介绍,武汉径河化工有限公司 开发的抗硫化返原剂 WK901 具有与抗硫化返原 剂 PK900 相似的抗硫化返原作用 即该助剂只在 胶料产生返原时才参与反应,可保持硫化胶的物 理性能。本工作研究了抗硫化返原剂 WK901 在 全钢载重子午线轮胎上三角胶中的应用效果,并 与抗硫化返原剂 PK900 进行了对比,以期用国内 产品替代进口产品。

1 实验

1.1 原材料

NR 牌号 SMR20 马来西亚产品 抗硫化返原 剂 PK900, 富莱克斯公司产品:抗硫化返原剂 WK901 武汉径河化工有限公司产品 其它材料为 生产常用材料。

1.2 基本配方

试验基本配方:NR 100 炭黑 43 防护体 系 3.5 硫化体系 10.5 抗硫化返原剂

作者简介:黄义钢(1976-) 男 江西高安人,青岛双星轮胎工 业有限公司工程师,学士,主要从事轮胎配方设计与工艺管理 工作。

种、变量 其它 6.5。配方 A。中未加抗硫化返原 剂 配方 A₁(生产配方)中抗硫化返原剂 PK900 用量为0.7份 配方 A。A。和 A。中抗硫化返原剂 WK901 用量分别为 0.7 1 和 1.5 份。

1.3 试验设备和仪器

GK400N 型密炼机,德国克虏伯公司产品: GK255N 型密炼机 . 益阳橡胶塑料机械集团有限 公司产品;XK-150型开炼机,广东湛江机械厂产 品:MDR2000E 型硫化仪、MV2000 型门尼粘度仪 和 TENSOMETER2000 型电子拉力机 美国埃迩 法科技有限公司产品:1.0 MN 蒸汽平板硫化机, 上海第一橡胶机械厂产品 :401B 型老化试验箱 . 江都试验机械厂产品。

1.4 胶料混炼工艺

1.4.1 小配合试验

小配合试验胶料混炼在 XK-150 型开炼机上 进行 其工艺为 :生胶塑炼→加小料 硫黄和促进 剂除外)→加炭黑→加油料→加促进剂和硫黄等。

1.4.2 大配合试验

大配合试验胶料母炼在 GK400N 型密炼机中 进行 終炼在 GK255N 型密炼机中进行。母炼段 工艺为:生胶塑炼^{60 s}提压砣 加小料、炭黑 压压 $\stackrel{40 \text{ s}}{\longrightarrow}$ 注油,提压砣再压 $\stackrel{20 \text{ s}}{\longrightarrow}$ 提压砣再压至 160 ℃排胶。密炼机转速为50 r·min⁻¹,抗硫 化返原剂在母炼段加入。终炼段工艺为:投母炼胶、硫黄、促进剂,压压砣 $\xrightarrow{40 \text{ s}}$ 提压砣再压 $\xrightarrow{30 \text{ s}}$ 提压砣再压 $\xrightarrow{20 \text{ s}}$ 提压砣再压至 105 ° 排胶。密炼机转速为 $20 \text{ r} \cdot \min^{-1}$ 。

1.5 性能测试

抗硫化返原剂的化学分析按富莱克斯公司内 控标准检测 ;胶料的硫化特性和物理性能按相应 国家标准进行测试。

2 结果与讨论

2.1 理化分析

抗硫化返原剂 WK901 与 PK900 的理化分析结果见表 1。从表 1 可以看出,抗硫化返原剂 WK901 和 PK900 的各项理化性质分析结果均达到富莱克斯内控标准。

表 1 抗硫化返原剂 WK901 与 PK900 的 理化分析结果

	实测		
项 目	WK900	PK901	门红红
外观	浅白色粉末	浅白色颗粒	同认可产品
初熔点/℃	87.8	84.3	≥75
终熔点/℃	89.5	85.4	80 ~90
加热减量(105 ℃)/%	0.26	0.20	≤0.5
灰分质量分数	0.000 3	0.000 1	≤0.003

2.2 小配合试验

以 WK901 用量为变量的试验配方和使用 PK900 的生产配方小配合对比试验结果如表 2 和 3 所示。

表 2 小配合试验胶料的硫化特性和焦烧性能

项	目	A_0	\mathbf{A}_1	A_2	A_3	A_4			
门尼焦烧时间(127 ℃)/min	16.55	15.73	15.70	15.87	15.93			
硫化仪数据 185 ℃×30 min)									
$M_{\rm L}/({\rm dN \cdot m}$)	0.54	0.82	1.04	0.9	0.85			
$M_{\rm H}/({ m dN \cdot m})$	1)	10.95	11.24	11.49	11.51	11.20			
$M_{\rm F}^{1)}/({\rm dN} \cdot$	m)	5.63	8.39	8.81	9.64	10.86			
$\Delta M'^{2)}/\%$		51.1	27.35	25.62	17.62	3.29			
t_{30}/min		0.65	0.65	0.65	0.65	0.67			
t_{60}/min		0.85	0.85	0.85	0.83	0.85			
硫化仪数据 151 ℃ ×120 min)									
$M_{\rm L}/({\rm dN \cdot m}$)	0.63	0.92	1.18	1.00	0.96			
$M_{\rm H}/({ m dN \cdot m})$	1)	13.6	13.68	13.51	13.65	13.43			
$M_{\rm F}^{3)}/({\rm dN}\cdot$	m)	9.18	11.54	11.65	12.43	13.22			
$\Delta M'^{2)}/\%$		34.08	16.77	15.09	9.64	1.68			
t_{10}/min		3.03	3.08	3.15	3.05	3.07			
t_{50}/min		4.98	5.10	5.15	5.05	5.15			
t_{90}/min		9.17	9.43	9.43	9.42	9.78			

注 1 $M_{\rm F}$ 指硫化仪测试结束时对应的转矩值(硫化仪试验时间为 30 min ,此处 $M_{\rm F}$ 为 30 min 时的转矩值) 2) $\Delta M'=(M_{\rm H}-M_{\rm F})/(M_{\rm H}-M_{\rm L})\times 100\%$ 3)硫化仪试验时间为 120 min ,此处 $M_{\rm F}$ 为 120 min 时的转矩值.

表 3 小配合试验胶料的物理性能

	A	0	A	1	A	12	A	¹ 3	A	_4
硫化时间(151 °C)/ min	20	120	20	120	20	120	20	120	20	120
密度/(Mg·m ⁻³)	1.110		1.110		1.110		1.110		1.111	
邵尔 A 型硬度/度	64	61	64	64	64	64	64	63	65	66
100% 定伸应力/MPa	2.1	1.6	2.3	2.0	2.2	2.1	2.2	2.0	2.0	2.4
300% 定伸应力/MPa	9.4	7.3	9.9	9.3	9.7	9.6	9.8	9.4	8.9	11.4
拉伸强度/MPa	27.4	21.3	27.1	23.5	27.2	23.0	26.9	24.8	27.8	22.9
拉断伸长率/%	565	574	512	540	509	496	485	473	459	449
拉断永久变形/%	41	23	41	20	41	19	39	20	39	16
撕裂强度/(kN·m ⁻¹)	82	36	85	40	82	41	81	40	84	41
回弹值/%	48.9		48.7		48.6		49.6		45.1	
100 ℃ ×72 h 热空气老化后										
邵尔 A 型硬度/度	69		70		70		69		71	
100% 定伸应力/MPa	3.6		3.8		4.1		4.1		4.0	
拉伸强度/MPa	14.9		15.6		16.8		15.2		16.7	
拉断伸长率/%	299		304		298		292		306	
拉断永久变形/%	15		12		17		12		17	
撕裂强度∕(kN⋅m ⁻¹)	34		29		35		38		31	
回弹值/%	45.9		47.9		48.0		47.4		46.8	

从表 2 可以看出 配方 $A_1 \sim A_4$ 胶料的门尼焦烧时间基本一致 ,与配方 A_0 胶料基本接近 ,表明加入抗硫化返原剂 WK901 与加入抗硫化返原剂 PK900 一样 ,对胶料的加工安全性基本没有影响。不论是在硫化温度 151 $^{\circ}$ C 还是在高温 185 $^{\circ}$ C ,配方 $A_1 \sim A_4$ 胶料的 M_H 和硫化速率(以 t_{30} t_{60} 和 t_{90} 表征)基本与配方 A_0 胶料一致 ;配方 $A_1 \sim A_4$ 胶料的 $\Delta M'^{[1]}$ 依次减小 ,其中配方 A_2 与 A_1 基本一致 表明随着抗硫化返原剂 WK901 用量增大 ,胶料的抗硫化返原性逐渐提高 ,同样用量下 ,抗硫化返原剂 WK901 与 PK900 一样 ,在对胶料的 M_H 和硫化速率无影响的前提下 ,可有效提高胶料的抗硫化返原性。

从表 3 可看出 在胶料正硫化(20 min 点)时,配方 $A_1 \sim A_4$ 胶料老化前的硬度、100% 和 300% 定伸应力、拉伸强度、拉断永久变形、撕裂强度及弹性与配方 A_0 胶料基本一致,但是配方 $A_1 \sim A_4$ 胶料的拉断伸长率均低于配方 A_0 胶料。 过硫化(120 min 点)后,配方 $A_1 \sim A_4$ 胶料的 100% 和 300% 定伸应力、拉伸强度均优于配方 A_0 胶料,其中配方 A_2 与 A_1 基本一致。在经 100% 个 \times 72 h 热空气老化后 配方 $A_1 \sim A_4$ 胶料的拉伸强度保持率和拉断伸长率保持率均优于配方 A_0 胶料,其中配方 A_2 与 A_1 基本接近。这表明加入同样用量的抗硫化返原剂 WK901,可以达到与抗硫化返原剂 PK900 相似的抗硫化返原效果。

2.3 大配合试验

根据小配合对比试验结果 ,考虑到性能价格比因素 ,认为抗硫化返原剂 WK901 用量为 0.7 份时的试验配方(A_2)综合性价比最优 ,因此采用该试验配方进行了大配合试验 ,并与生产配方进行了对比。试验结果见表 4 和 5。

从表 4 和 5 可以看出 ,使用相同用量(0.7 份)的抗硫化返原剂 ,可以获得基本相同的物理性能。其中胶料的硫化速率和 $\Delta M'$ 相近 ,表明二者抗硫化返原的作用机理相似、效果相当。

3 结论

(1)抗硫化返原剂WK901不影响胶料的加

表 4 大配合试验胶料的硫化特性和焦烧性能

项 目	试验配方	生产配方
门尼焦烧时间(127 ℃)/ min	29.13	33.08
硫化仪数据(185 ℃×30 min)		
$M_{\rm L}/\!({ m dN\cdot m})$	1.57	0.96
$M_{ m H}/({ m dN\cdot m})$	10.83	10.34
$M_{\rm F}^{1)}/({\rm dN \cdot m})$	8.55	8.25
$\Delta M^{\prime 2})/\%$	24.62	22.28
t_{30}/\min	0.91	0.87
t_{60}/min	1.17	1.13
硫化仪数据 151 ℃×120 min)		
$M_{ m L}/({ m dN\cdot m})$	1.62	1.09
$M_{ m H}/({ m dN\cdot m})$	12.97	12.85
$M_{\rm F}^{3}$ /(dN · m)	11.17	11.04
$\Delta M^{\prime 2})/\%$	15.86	15.39
t_{10}/\min	6.08	5.88
t_{50}/min	9.19	9.26
t_{90}/\min	14.27	14.46

注:同表2。

表 5 大配合试验胶料的物理性能

项 目	试验	配方	生产配方		
硫化时间(151 ℃)/ min	20	120	20	120	
密度/(Mg·m ⁻³)	1.108		1.102		
邵尔 A 型硬度/度	63	62	63	62	
100% 定伸应力/MPa	2.2	2.1	2.3	1.9	
300% 定伸应力/MPa	10.0	9.9	10.1	9.2	
拉伸强度/MPa	27.2	24.2	27.3	23.7	
拉断伸长率/%	570	548	567	542	
拉断永久变形/%	34	16	32	16	
撕裂强度/(kN·m ⁻¹)	83.6	51.9	88.4	48.7	
回弹值/%	48.5	45.2	50.0	48.5	
100 ℃ ×72 h 热空气老化后					
邵尔 A 型硬度/度	67		68		
100% 定伸应力/MPa	3.6		3.5		
拉伸强度/MPa	9.0		6.8		
拉断伸长率/%	203		179		
拉断永久变形/%	4		4		
撕裂强度/(kN·m ⁻¹)	36.7		34.8		
回弹值/%	51.3		51.9		

工安全性和硫化速率 ,可明显改善胶料的抗硫化 返原性。

(2)随着抗硫化返原剂 WK901 用量的增大, 胶料的抗硫化返原性逐渐提高,但是胶料性能价格比呈下降趋势。抗硫化还原剂 WK901 用量以 0.7 份为佳。

(3)同样用量下,抗硫化返原剂WK901可

以提供与抗硫化返原剂 PK900 相当的抗硫化返原效果 ,两种抗硫化返原剂对硫化胶物理性能的影响基本相同。用国产 WK901 替代进口产品是可行的。

参考文献:

[1] 张碧俊. 抗硫化返原剂 Perkalink® 900 在载重子午线轮胎中的应用[J]. 轮胎工业 2002 22(4) 217-220.

第13届全国轮胎技术研讨会论文

Application of anti-recovery agent WK901 in BTR tire

HUANG Yi-gang LIN Xiang-yang PANG Hua

(Oingdao Doublestar Tire Industry Co., Ltd Jiaonan 266400 China)

Abstract :The application of anti-recovery agent WK901 in the upper bead filler of BTR tire was investigated and compared to anti-recovery agent Perkalink[®] 900(PK900). The results showed that both WK901 and PK900 improved the anti-reversion of rubber compound without affecting the processibility and curing rate ;two anti-recovery agents gave the similar effects on the physical properties of vulcanizates ;and the rubber compound with the optimal comprehensive properties was obtained by using 0.7 phr of WK901.

Keywords anti-recovery agent reversion BTR tire bead filler

"进口废旧轮胎"专家论证会在京召开

中图分类号:TQ336.1+6;F272.3 文献标识码:D

由中国橡胶工业协会组织的"进口废旧轮胎"专家论证会于2004年12月21日下午在北京召开,参加会议的有来自中国橡胶工业协会轮胎分会、废橡胶综合利用分会、有关轮胎企业、中国工商联以及媒体共30多名代表,国家质量监督检验检疫总局也派代表到会听取各方面意见。

会议之前,即 2004 年 12 月 21 日上午,应国家质量监督检验检疫总局的邀请,中国橡胶工业协会和中国轮胎翻修利用协会分别派 8 名和 6 名专家到总局阐述各自的观点和理由,国家发改委和商务部也派人到场听取意见。

随着我国国民经济的发展,有关我国资源、环境保护等关系我国可持续发展战略的重大问题日益显得突出,轮胎工业也同样面临着这些重大问题。能否进口废旧轮胎关系到国家利益,引起了方方面面的关注。2004年11月30日,近20家大轮胎企业向国家质量监督检验检疫总局发出了"强烈要求国家禁止进口废旧轮胎的呼吁书",轮胎分会申述了关于不能进口废旧轮胎的理由和意见,废橡胶综合利用分会从国家利益出发也表明

了不能进口废旧轮胎的态度。

主张进口旧轮胎的一方认为,进口旧轮胎有利于翻胎工业,有利于资源综合利用。实际上,废、旧轮胎是难以分清的,进口时逐条检验可操作性很难,如果放开"进口旧轮胎"这个口子,大量的废旧轮胎必将拥入国内,不仅造成对新胎市场的严重冲击,而且存在许多安全隐患,最终也加大了我国处理废轮胎的难度,对环境保护显然是极为不利的。

绝大多数代表认为,中国目前已是世界第二大产生废旧轮胎的国家,集中力量研究如何处理、利用废旧轮胎才是我国轮胎循环经济发展的主题。目前,我国仅载重子午线轮胎产量就已接近1800万条,随着严重超载的抑制,可翻新轮胎将会越来越多,国内胎源是充足的,翻胎行业也必将得到发展。同时,随着国家相应政策、法规的出台,对废旧轮胎的综合利用也必将有新的领域出现。因此,与会代表以科学为依据,以实事求是的负责态度,恳请国家有关部门禁止进口废旧轮胎。

(北京橡胶工业研究设计院 陈志宏供稿)