DG填充剂在水胎胶中的应用

何景武,赵相森,王光辉

(桦林轮胎股份有限公司,黑龙江 牡丹江 157032)

摘要:在水胎胎体胶中用 DG填充剂等量替代陶土进行了小配合、大料、成品胶料以及成品水胎试验。结果表明,用 DG填充剂替代陶土,可以提高胶料的拉伸强度、撕裂强度,但使扯断伸长率稍有下降;可以提高胶料的300%定伸应力和硬度,使成品水胎挺性变好,有利于工艺操作;试验水胎的平均使用次数为203次,比使用陶土的原生产水胎提高5.2%。

关键词:水胎;胎体;填充剂

中图分类号: TQ336. 1 *5; TQ330. 38 文献标识码:B 文章编号:1006-8171(2000)03-0151-03

DG填充剂是一种新型补强填充剂,是以石灰氮(氰氨基钙)为原料,以水解、脱钙制取双氰氨后的副产物。其主要化学成分为碳酸钙、游离碳、二氧化硅、有机氨化物等。据资料介绍,DG填充剂具有一定的补强性,可以替代陶土、碳酸钙和部分炭黑使用。

我公司原生产水胎胎体胶以陶土作为填充剂,但由于陶土是由天然矿物质加工而成,产品质量稳定性受产地、矿脉的影响较大,致使生产常常不能正常进行,况且陶土入厂后需经干燥、筛选等二次加工,既浪费人力又浪费能源,已远远满足不了生产要求。本工作通过化学分析、小配合、大料及成品水胎对比试验,探讨DG填充剂替代陶土在水胎胎体胶中应用的可行性,现简介如下。

1 实验

1.1 原材料

NR,3[#]烟胶片,泰国产品;DG填充剂,牡丹江市化工建材厂产品;陶土,牡丹江市东河化工厂产品;其余配合剂为橡胶工业常用产品。

1.2 基本配方

基本配方为:NR 100;硫黄 2.5;促进剂

作者简介:何景武(1971-),男,黑龙江牡丹江人,桦林轮胎股份有限公司助理工程师,学士,从事配方设计与工艺管理工作。

0.2;活化剂 12.0;防老剂 3.0;炭黑 55; 陶土或 DG填充剂 20.0;高芳烃油 3.0。

1.3 主要设备和仪器

XK·160 型开炼机; XM140 型密炼机; 900 mm x900 mm 三层平板硫化机; 孟山都 R-100 型硫化仪: M200E 型门尼粘度计。

1.4 试样制备

小配合试验胶料采用 XK-160 型开炼机进行混炼,混炼工艺如下:NR(已塑炼)——活化剂、防老剂——炭黑、陶土(或 DG 填充剂)——高芳烃油——促进剂——硫黄————————————下片。试样采用 900 mm ×900 mm 三层平板硫化机硫化,硫化温度为 142 ,硫化时间按 R-100 型硫化仪在 145 下测定的正硫化时间设定。

大料试验胶料采用 XM-140 型密炼机进行 混炼,其它同小配合试验胶料。

1.5 性能测试

性能按相应标准进行测试。

2 结果与讨论

2.1 化学分析

陶土和 DG填充剂化学分析结果如表 1 所示。

2.2 小配合试验

小配合试验结果如表 2 所示。

从表2可以看出,试验胶料的拉伸强度、

表 1 化学分析结果

项 目	实测	指标
陶土		
三氧化二铝质量分数	0. 288 *	0.33
二氧化硅质量分数	0.553 *	0.52
水分质量分数	0.0098	0.015
100 目筛余物质量分数	0	0
325 目筛余物质量分数	0.013	0.015
锰质量分数 ×10 ⁴	0.5	0.7
沉降体积/(mL ·g - 1)	2.5 *	4.0
pH值	5.7	5.0~8.0
900 灼烧减量/%	10.46	11.0
DG填充剂		
碳酸钙质量分数	0.78	0.70
二氧化硅质量分数	0.08	0.08
游离碳质量分数	0.09	0.07
氮质量分数	0.029	0.01 ~ 0.03
120 目筛余物质量分数	0	0.005
200 目筛余物质量分数	0	0.000 5
水分质量分数	0.007	0.015

注:*未达到指标要求。

表 2 小配合试验结果

项 目	试验配方	原生产配方
门尼粘度[ML(1+4)100]	36.3	37.6
门尼焦烧(120)/min	20.62	29.87
硫化胶性能(142 ×80 min)		
拉伸强度/ MPa	14.4	12.4
扯断伸长率/%	542	577
300 %定伸应力/ MPa	5.9	4.0
扯断永久变形/%	34.7	29.5
邵尔 A 型硬度/度	62	54
回弹值/%	34	34
撕裂强度/ (kN·m ⁻¹)	66	46
屈挠疲劳时间 */ min	25.6	29.2
100 ×48 h 热空气老化后		
拉伸强度/ MPa	10.2	8.3
扯断伸长率/%	397	440
撕裂强度/ (kN·m ⁻¹)	43	42
邵尔 A 型硬度/度	64	56
屈挠疲劳时间 */ min	10.2	14.4

注:*试验条件为:频率 360 次·min⁻¹;最大伸长取试样 扯断伸长率的 30 %。

300 %定伸应力、硬度、撕裂强度等性能均有所提高,说明 DG 填充剂对胶料的补强作用优于陶土。另通过分析 DG 填充剂的成分不难看出,DG填充剂中的有机氨化物(胺类)对胶料的交联反应起促进作用,体现为胶料的拉伸强度、300 %定伸应力、撕裂强度、硬度有所提高。

胶料的定伸应力、硬度提高,使成品的挺性提高,从而减少了由于成品使用后期变软不利于工艺操作情况的发生。但胶料的扯断伸长率有所降低。100 ×48 h 热空气老化后胶料的物理性能保持率与原生产配方胶料基本相当。胶料门尼粘度相当,焦烧时间缩短 9 min,为20.62 min,完全可以满足工艺要求。

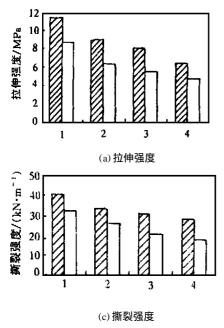
2.3 大料试验

大料试验结果如表 3 所示。

表 3 大料试验结果

	试验配方	原生产配方
门尼粘度[ML(1+4)100]	50.9	48.4
焦烧时间(120)/min	13.5	19.5
硫化仪数据(145)		
$M_{\rm L}/$ (N ·m)	0.73	0.72
$M_{\rm H}/({\rm N}\cdot{\rm m})$	3.10	2.44
t ₁₀ / min	7.20	8.30
t ₉₀ / min	33.42	39. 10
硫化胶性能(142 x 80 min)		
拉伸强度/ MPa	15.5	13.5
扯断伸长率/%	600	610
300 %定伸应力/ MPa	6. 1	5.2
扯断永久变形/%	28.2	26. 2
邵尔 A 型硬度/度	58	53
回弹值/%	33	32
撕裂强度/ (kN·m ⁻¹)	65	48
屈挠疲劳时间 */ min	23.4	30.4
100 ×48 h 热空气老化后		
拉伸强度/ MPa	10.5	9.1
扯断伸长率/%	425	415
撕裂强度/ (kN·m ⁻¹)	38	34
邵尔 A 型硬度/度	62	55
屈挠疲劳时间 */ min	15.4	13.4

注:同表2。


从表 3 可以看出,大料试验与小配合试验 胶料物理性能基本吻合。从硫化仪数据看,试验 胶料的 M_H 较原生产配方胶料高 0.66 N $_{\rm fm}$,再次说明 D G 填充剂对胶料的补强作用优于陶土。试验胶料的 t_{90} 比原生产胶料的 t_{90} 缩短 6 min ,这不难理解,陶土一般显偏酸性,对胶料的硫化反应起迟延作用,而 D G 填充剂中的有机氨化物对胶料的硫化反应起促进作用,体现在试验胶料的硫化反应速度较快。

2.4 成品胶料性能试验

分别取试验胶料水胎和原生产胶料水胎进

行解剖做成品胶料性能试验,结果如图1所示。

从图 1 可以看出,与原生产胶料相比,试验 胶料老化前后的拉伸强度、撕裂强度较高,硬度 较大;扯断伸长率老化前较低,老化后稍高;耐 老化性能提高,其它物理性能基本相近。试验 结果基本重现了小配合和大料试验的结果。

(d) 邵尔 A 型硬度

图 1 胶料老化前后性能对比

─试验胶料: ─原生产胶料。1 ─老化前:2 ─100

2.5 成品水胎使用性能试验

为进一步验证实际使用情况,将用试验胶料制造的40条水胎与40条原生产水胎投入使用进行对比,结果普遍反映试验水胎挺性好,工艺操作方便。试验水胎平均使用次数为203次,原生产水胎使用次数为193次,提高5.2%。

3 结语

在水胎胎体胶中以DG填充剂替代陶土是

x48 h 老化;3 →00 x72 h 老化;4 →00 x96 h 老化 可行的:

- (1)可提高胶料拉伸强度、撕裂强度,但使扯断伸长率稍有下降。
- (2) 可提高胶料 300 %定伸应力和硬度,从而使成品水胎的挺性变好,有利于工艺操作。
 - (3) 试验胶料水胎的使用次数略有增加。
- (4) 可减少因陶土入厂后进行干燥、筛选等工序所造成的能源和人力的浪费,便于工艺管理。

收稿日期:1999-11-09

东风金狮 9.00 - 20 新型 轮胎系列通过鉴定

近日,东风金狮轮胎有限公司研究开发的 9.00-20新结构轮胎系列产品通过了由省经 贸委和省石化厅组织的鉴定。

该系列产品突破传统设计方法,采用先进的 CAD 技术,以平衡轮廓理论为根据,以高负荷能力、高耐磨性为追求目标,研究载重斜交轮

胎的力学性能。通过改进外轮廓设计保证产品有较好的超负荷性能。花纹设计除考虑美观大方外,还改善了轮胎充气负荷下的应力分布,增强了胎肩散热能力,提高了超载、高速性能和使用寿命,轮胎抓着力、耐磨性也有明显改善,室内耐久性试验达到120 h,高于国家标准。在正常条件下行驶,一次试验里程达10万 km。

(摘自《中国汽车报》,2000-01-19)