

图 4 塑性值分布

A — 工艺控制标准值, 两边为偏差

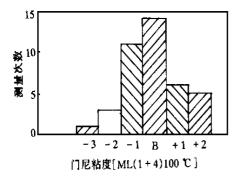


图 5 门尼粘度分布

B — 工艺控制标准值, 两边为偏差

波动范围减小 5 %,指标控制更为稳定。从图 4 还可看出,塑性值的分布良好,而且所有塑性值 波动均处于公差范围内。

通过图 5 计算得出,门尼粘度极大值为66.8,极小值为61.5,以平均值为基准,最大极差为2.57,门尼粘度指标分布良好。

新工艺生产的塑炼胶经终炼后的主要质量指标见表 3。

Titan 公司的下一代轮胎

中图分类号: TO336.1 文献标识码:D

英国《轮胎与配件》2001 年 8 期 71 页报道:

Titan 公司推出了新型窄胎侧 (LSW) 轮胎。与标准尺寸轮胎相比,该胎胎侧明显缩小,而其滚动外径没有变化。Titan 通过采用缩小胎侧、加大轮辋的办法使轮胎外径保持不变,这意味着机械传动和与地面的间隙均不变,轮胎、

从批量生产随机抽检的数据分析得出,变速塑炼在质量上较原生产工艺有明显的提高。

5 经济效益

通过对密炼机进行变速塑炼工艺的调整,在保持或提高原有质量的前提下,每车塑炼时间从现生产的227 s 缩短到179.64 s,提高生产效率20.86%。

6 结语

密炼机变速塑炼工艺的开发成功,使 NR 的塑炼工艺采用直流电机变速塑炼,塑炼胶的质量稳定,而且生产效率得到较大提高,为进一步开发密炼机变速混炼、密炼机变速变压炼胶打下了基础。

表 3 变速与恒速塑炼终炼胶物理性能对比

项	目	300 %定伸	拉伸强度/	扯断伸长	撕裂强度/
		应力/ MPa	MPa	率/ %	(kN ·m · 1)
变速					
1		12.3	26.4	547	60.1
2		12.8	27.7	556	66.1
3		13	26.1	524	66.6
平均		12.7	26.73	542.3	64.27
极差		0.7	1.6	32	6.5
恒速					
1		12.4	26.7	547	61.5
2		11.8	26.5	562	55.6
3		12.2	26.4	534	59.4
3	平均	12.10	26.53	547.70	58.83
极差		0.6	0.3	28	5.9

第 11 届全国轮胎技术研讨会论文

轮網拆裝均很方便。研究表明,采用这种几何 形状,可改善较低气压和较高负荷下胎圈脱位 和轮辋滑移。接地印痕较大而胎侧较窄仍提高 了轮胎垂直和横向稳定性,从而改善了操纵性, 减轻了跳动,提高了牵引性,彻底改变了滑动转 向和架空升降平板的应用。随着胎侧加强,耐 刺扎性能得到提高,生热降低,撕裂和裂口减 轻。

(涂学忠摘译)