航空子午线轮胎几何参数化建模方法开发

石玉彪,靳金鑫,赵存伟,左文杰*

(吉林大学 机械与航空航天工程学院,吉林 长春 130022)

摘要:针对1270×455 R22航空子午线轮胎结构,提出一种几何参数化的建模方法。该方法使用参数39个(描述轮胎 几何信息的参数16个,调整轮胎几何轮廓的参数23个),通过建立截面外轮廓,钢丝圈、三角胶和胎体帘布层的轮廓,带束 层、增强层与胎面的轮廓和帘线设计,可以精确建立航空子午线轮胎二维截面的几何模型。该方法可以加速轮胎结构的 建模。

关键词:航空子午线轮胎;几何模型;参数;轮廓 中图分类号:TQ336.1;U463.341⁺.6 文献标志码:A

文章编号:1006-8171(2023)08-0451-07 DOI:10.12135/j.issn.1006-8171.2023.08.0451 OSID开放科学标识码 (扫码与作者交流)

在轮胎的研发设计中,数字化技术具有极其 重要的作用,贯穿了从轮胎设计到生产的整个开 发周期^[1-4]。航空子午线轮胎结构复杂,细节繁 多,需要花费大量时间建立几何模型。因此,开发 一种准确、高效的航空子午线轮胎的建模方法至 关重要。

王泽鹏等^[5]使用AutoCAD的VBA语言编写接 口程序,使AutoCAD图纸信息可以传输到Ansys 软件,便于在Ansys中完成轮胎几何建模和网格划 分。洪圣康^[6]实现了对轮胎二维CAD图的识别,可 以将CAD图中的节点坐标、线条信息、区域信息单 独保存。以上研究均需要对轮胎的CAD图进行几 何清理,耗时较长。A. K. KONDE等^[7]使用X射线 断层成像设备、激光全息设备等获取了轮胎的几 何数据,可以准确地描述轮胎横截面的周长以及 帘布层线和帘线末端的位置,由此得到轮胎的二 维截面图像。吴长辉等^[8]对轮胎各部件自动化建 模,再装配建模部件,从而实现轮胎的整体建模。 哈斯巴根等^[9]将轮胎胎面、胎侧、帘线层、带束层等 主要部件进行合理简化,对轮胎断面曲线尺寸进 行合理计算并重新绘制,控制轮胎外形及其网格 精度对模型求解的影响,建立了由一维梁单元、二 维壳单元、三维实体单元组合的子午线轮胎有限 元模型。张方亮等^[10]对CATIA进行二次开发,提 出了一种智能化轮胎3D花纹建模方案,花纹模型 由沟型花纹设计模块和沟间交汇连通模块组成。 众多学者对轮胎建模的大量研究工作提高了轮胎 的建模效率,但如何对二维轮胎进行高效建模目 前鲜有研究。

本工作针对1270×455 R22航空子午线轮胎 提出一种几何参数化建模方法。该方法首先根据 轮胎的几何位置信息建立其二维轴对称模型,然 后将二维模型绕对称轴旋转1周,即可得到轮胎的 三维几何模型。

1 轮胎参数化几何模型的建立

轮胎部件包括气密层、胎体帘布层、带束层、 增强层、胎侧、胎面、钢丝圈、三角胶和胎踵,其二 维截面如图1所示。

本工作选取16个参数(见表1)表征轮胎的几 何位置,以建立其二维轴对称模型。

2 轮胎截面外轮廓的建立

2.1 轮胎截面上部轮廓

2.1.1 轮胎截面上部外侧轮廓

以轮胎中心为原点,*Y*轴为对称轴建立平面直 角坐标系。确定轮胎截面(以半截面代表,下同) 上部外侧轮廓各点的坐标,所需参数有*R*,*W*和*R*_r。

451

基金项目:国家重点研发计划项目(2020YFA0713604)

作者简介:石玉彪(1999一),男,安徽芜湖人,吉林大学在读硕 士研究生,主要从事航空轮胎结构设计研究。

^{*}通信联系人(zuowenjie@jlu.edu.cn):左文杰(1981—),男, 山西忻州人,吉林大学教授,博士,主要从事航空轮胎自主工业软 件开发。

表1	参数索引	
1X I	シ奴示リ	

参数	含义	参数	含义
R	轮胎最大直径	T _b	带束层厚度
W	轮胎截面最大宽度	T_{i}	气密层厚度
$R_{\rm r}$	轮缘直径	$T_{\rm s}$	胎侧厚度
$W_{\rm r}$	轮辋与截面宽度之比	$T_{\rm hh}$	胎踵横向厚度
T_{t}	胎面厚度	$T_{\rm hv}$	胎踵纵向厚度
$T_{\rm p}$	增强层厚度	A_{t}	胎圈锥度
$T_{\rm c}$	胎体帘布层厚度	$R_{\rm b}$	钢丝圈直径
D_{ah}	三角胶顶点与钢丝圈圆心	$D_{\rm av}$	三角胶顶点与钢丝圈
的横向距离			圆心的纵向距离

下文*P*_i表示第*i*个点,*H*_i表示第*i*个点的横坐标, *V*_i表示第*i*个点的纵坐标,*C*_i为调整轮胎几何轮廓的 可变系数,*i*为自然数。

轮胎截面上部外侧轮廓由2段圆弧构成,其 中, P_1 , P_4 和 P_3 构成第1段圆弧, P_3 , P_5 和 P_2 构成第2 段圆弧,如图2所示。确定 P_1 — P_5 的坐标即可确定 轮胎截面上部外侧轮廓,方法如下。

图2 轮胎截面上部外侧轮廓

从图2可以看出,H₁与V₁的计算式为

$$H_1 = 0 \qquad V_1 = \frac{R}{2} \tag{1}$$

H2与V2的计算式为

$$H_2 = \frac{W}{2} \quad V_2 = \frac{R + R_r}{4}$$
 (2)

H₃与V₃的计算式为

$$H_{3} = \frac{1}{2}C_{1}W \quad V_{3} = \frac{1}{2}C_{2}(R - R_{r})$$
(3)
$$H_{4} = V_{4}$$
bit 算式为

$$\begin{cases} H_4 = \frac{1}{2} C_1 C_3 W \\ V_4 = \frac{1}{2} R_r + [C_4 (1 - C_2) + C_2] \frac{(R - R_r)}{2} \end{cases}$$
(4)

H₅与V₅的计算式为

$$\begin{cases} H_5 = \frac{1}{2} [C_5(1 - C_1) + 1] W \\ V_5 = C_6 [(2C_2 - 1) \frac{R - R_r}{4} + \frac{R + R_r}{4}] \end{cases}$$
(5)

通过改变相应系数的大小可调整P3-P5的位置。

2.1.2 轮胎截面上部内侧轮廓

由于轮胎为铺层结构,各组件之间无间隙贴 合在一起,因此轮胎截面上部内侧轮廓点的坐标 可由其外侧轮廓点坐标依据其几何位置计算得 到,需要确定的组件厚度分别有*T*_t,*T*_p,*T*_b,*T*_c,*T*_i和 *T*_s。轮胎截面上部内侧轮廓由2段圆弧构成,其 中,*P*₆,*P*₉和*P*₈构成第1段圆弧,*P*₈,*P*₁₀和*P*₇构成第 2段圆弧,如图3所示。确定*P*₆—*P*₁₀的坐标即可确 定轮胎截面上部内侧轮廓,方法如下。

图3 轮胎截面上部内外侧轮廓

令 T_v 为 T_t , T_p , T_b , T_c , T_i 的和。 T_h 为轮胎侧壁厚度, T_v 与 T_h 的计算式为

$$\begin{cases} T_{v} = T_{t} + T_{p} + T_{b} + T_{c} + T_{i} \\ T_{b} = T_{i} + C_{2}T_{c} + T_{c} \end{cases}$$
(6)

其中, C₇与T_s共同控制T_h。 H₆与V₆的计算式为

$$H_6 = 0 \quad V_6 = \frac{R}{2} - T_v \tag{7}$$

H7与V7的计算式为

$$\begin{cases} H_7 = \frac{W}{2} - T_{\rm h} \\ V_7 = \frac{R + R_{\rm r}}{4} \end{cases}$$
(8)

$$\begin{cases} H_{8} = C_{8} \left(\frac{W}{2} - T_{h} \right) \\ V_{8} = \frac{R + R_{r}}{4} + C_{9} M_{1} \end{cases}$$
(10)

令M2为V6与V8的差值,则:

$$M_2 = (2 - C_2) \frac{R - R_r}{4} - (1 - C_2) T_v \qquad (11)$$

H,与V,的计算式为

$$\begin{cases} H_9 = C_1 C_3 \left(\frac{W}{2} - T_h\right) \\ V_9 = C_4 M_2 + \frac{R + R_r}{4} + C_2 M_1 \end{cases}$$
(12)

令M3为H7与H8的差值,M4为V7与V8的差值,则:

$$\begin{cases} M_3 = (1 - C_8) \left(\frac{W}{2} - T_h\right) \\ M_4 = C_9 M_1 \end{cases}$$
(13)

H10与V10的计算式为

$$\begin{cases} H_{10} = \frac{W}{2} - T_{\rm h} - C_{10}M_3 \\ V_{10} = \frac{R + R_{\rm r}}{4} + C_{11}M_4 \end{cases}$$
(14)

2.2 胎踵轮廓

胎踵轮廓由 P_{11} , P_{12} , P_{13} , P_{14} 组成的半封闭轮廓 构成,如图4所示。确定 P_{11} — P_{14} 的坐标即可确定 轮胎胎踵轮廓,所需参数分别为: W_r , A_t ,W, R_r , T_{hh} , T_{hv} , R_b , T_c 和 T_i ,方法如下。

H11与V11的计算式为

$$H_{11} = \frac{WW_{\rm r}}{2} \quad V_{11} = \frac{R_{\rm r}}{2} \tag{15}$$

令 M_5 为 H_{11} 与 H_{12} 的差值, M_6 为 V_{11} 与 V_{12} 的差 值,则:

$$\begin{cases} M_{5} = \frac{WW_{r}}{2} - 2T_{c} - T_{hh} - R_{b} - T_{i} \\ M_{6} = M_{5} \tan A_{t} \\ H_{12} 与 V_{12} 的计算式为 \end{cases}$$
(16)

$$\begin{cases} H_{12} = \frac{WW_r}{2} - M_5 \\ V_{12} = \frac{R_r}{2} - M_6 \end{cases}$$
(17)

令 M_7 为 V_{13} 与 V_{11} 的差值,则

$$M_7 = \frac{R_{\rm b}}{2} + T_{\rm c} + T_{\rm hv} \tag{18}$$

$$H_{13}与H_{11}相同,则H_{13}与V_{13}$$
的计算式为

$$\begin{cases} H_{13} = \frac{WW_r}{2} \\ V_{13} = \frac{R_r}{2} + M_7 \end{cases}$$
(19)

 H_{14} 与 H_{12} 相同, V_{14} 与 V_{13} 相同,则:

$$H_{14} = \frac{WW_r}{2} - M_5$$

$$V_{14} = \frac{R_r}{2} + M_7$$
(20)

2.3 钢丝圈与三角胶区域轮廓

钢丝圈圆心 (P_{15}) 与三角胶顶点 (P_{16}) 及对应 区域的轮胎外轮廓如图5所示,其外轮廓由 P_{17} , P_{21} , P_{19} 构成的圆弧, P_{19} , P_{20} , P_{14} 构成的圆弧和 P_{18} , P_{22} , P_{13} 构成的圆弧组成,所需参数分别为 D_{ah} , D_{av} , T_c , T_i 和 T_{hho}

图5 钢丝圈与三角胶区域轮廓

令 M_8 为 H_{15} 与 H_{13} 的差值,则:

$$M_{\rm s} = \frac{R_{\rm b}}{2} + T_{\rm c} + T_{\rm hh} \tag{21}$$

V15与V13相同,则H15与V15的计算式为

$$\begin{cases} H_{15} = \frac{WW_{\rm r}}{2} - M_8 + D_{\rm ah} \\ V_{15} = \frac{R_{\rm r}}{2} + M_7 \end{cases}$$
(22)

轮胎的三角胶与钢丝圈贴合在一起,因此 P_{16} 可由 H_{15}, V_{15} 与 D_{ah}, D_{av} 确定, H_{16} 与 V_{16} 的计算式为

(26)

$$\begin{cases} H_{16} = \frac{WW_{\rm r}}{2} - M_8 + D_{\rm ah} \\ V_{16} = \frac{R_{\rm r}}{2} + M_7 + D_{\rm av} \end{cases}$$
(23)

$$\diamondsuit \qquad M_9 = T_c + T_i \qquad (24)$$

 $M_{10} = T_{\rm c} + T_{\rm hh}$

H17与V17的计算式为

$$\begin{cases} H_{17} = \frac{WW_r}{2} - M_8 + D_{ah} - M_9 \\ V_{17} = \frac{R_r}{2} + M_7 + D_{av} + M_9 \end{cases}$$
(25)

Ŷ

则H18与V18的计算式为

$$\begin{cases} H_{18} = \frac{WW_{\rm r}}{2} - M_8 + D_{\rm ah} + M_{10} \\ V_{18} = \frac{R_{\rm r}}{2} + M_7 + D_{\rm av} \end{cases}$$
(27)

令 M_{11} 为 H_{14} 与 H_{17} 的差值, M_{12} 为 V_{14} 与 V_{17} 的差 值,则:

$$\begin{cases} M_{11} = D_{ab} - M_8 - M_9 + M_5 \\ M_{12} = D_{av} + M_9 \end{cases}$$
(28)

H19与V19的计算式为

$$\begin{cases} H_{19} = \frac{WW_{\rm r}}{2} - M_5 + C_{12}M_{11} \\ V_{19} = \frac{R_{\rm r}}{2} + M_7 + C_{13}M_{12} \end{cases}$$
(29)

从式(29)可以看出,改变 C_{12} 和 C_{13} 可调整 P_{19} 的位置。

令 M_{13} 为 H_{14} 与 H_{19} 的差值, M_{14} 为 V_{14} 与 V_{19} 的差 值,则:

$$\begin{cases} M_{13} = C_{12}M_{11} \\ M_{14} = C_{13}M_{12} \end{cases}$$
(30)

H20与V20的计算式为

$$\begin{cases} H_{20} = \frac{WW_{\rm r}}{2} - M_5 + C_{14}M_{13} \\ V_{20} = \frac{R_{\rm r}}{2} + M_7 + C_{15}M_{14} \end{cases}$$
(31)

从式(31)可以看出,改变 C_{14} 和 C_{15} 可调整 P_{20} 的位置。

令 M_{15} 为 H_{17} 与 H_{19} 的差值, M_{16} 为 V_{17} 与 V_{19} 的差 值,则:

$$\begin{cases} M_{15} = D_{ah} + M_5 - M_8 - M_9 - C_{12}M_{11} \\ M_{16} = D_{av} + M_9 - C_{13}M_{12} \end{cases}$$
(32)
$$H_{21} 与 V_{21}$$
的计算式为

$$\begin{cases} H_{21} = \frac{WW_r}{2} - M_5 + C_{12}M_{11} + C_{16}M_{15} \\ V_{21} = \frac{R_r}{2} + M_7 + C_{13}M_{12} + C_{17}M_{16} \end{cases}$$
(33)

从式(33)可以看出,改变 C_{16} 和 C_{17} 可调整 P_{21} 的位置。

令 M_{17} 为 H_{13} 与 H_{18} 的差值, M_{18} 为 V_{13} 与 V_{18} 的差值,则:

$$\begin{cases} M_{17} = D_{ah} + M_{10} - M_8 \\ M_{18} = D_{av} + M_{10} \end{cases}$$
(34)

H22与V22的计算式为

$$\begin{cases} H_{22} = \frac{WW_{\rm r}}{2} + C_{18}M_{17} \\ V_{22} = \frac{R_{\rm r}}{2} + M_7 + C_{19}M_{18} \end{cases}$$
(35)

从式(35)可以看出,改变 C_{18} 和 C_{19} 可调整 P_{22} 的位置。

2.4 轮胎截面下部轮廓

轮胎截面下部轮廓由2段圆弧构成,其中,P₂, P₂₃,P₁₈点构成第1段圆弧,P₇,P₂₄,P₁₇点构成第2段 圆弧,如图6所示。确定6个点坐标即可确定轮胎 截面下部轮廓,方法如下。

图6 轮胎截面下部轮廓

令 M_{19} 为 H_2 与 H_{18} 的差值, M_{20} 为 V_2 与 V_{18} 的差 值,则:

$$\begin{cases} M_{19} = \frac{W}{2} - \frac{WW_{\rm r}}{2} + M_8 - D_{\rm ah} - M_{10} \\ M_{20} = \frac{R - R_{\rm r}}{4} - M_7 - D_{\rm av} - M_{10} \end{cases}$$
(36)

H23与V23的计算式为

$$\begin{cases} H_{23} = \frac{W}{2} - C_{20}M_{19} \\ V_{23} = \frac{R+R_{\rm r}}{4} - C_{21}M_{20} \end{cases}$$
(37)

从式(37)可以看出,改变 C_{20} 和 C_{21} 可调整 P_{23} 的

位置。

令 M_{21} 为 H_7 与 H_{17} 的差值, M_{22} 为 V_7 与 V_{17} 的差 值,则:

$$\begin{cases} M_{21} = \frac{W}{2} - T_{\rm h} - \frac{WW_{\rm r}}{2} + M_8 - D_{\rm ah} + M_9 \\ M_{22} = \frac{R - R_{\rm r}}{4} - M_7 - D_{\rm av} - M_9 \end{cases}$$
(38)

H24与V24的计算式为

$$\begin{cases} H_{24} = \frac{WW_{\rm r}}{2} - M_8 + D_{\rm ah} - M_9 + C_{22}M_{21} \\ V_{24} = \frac{R_{\rm r}}{2} + M_7 + D_{\rm av} + M_9 + C_{23}M_{22} \end{cases}$$
(39)

从式(39)可以看出,改变 C_{22} 和 C_{23} 可调整 P_{24} 的位置。

综上所述,由24个特殊点的坐标可以建立对应 的圆弧,使圆弧首尾相连即可确定轮胎的外轮廓。

3 钢丝圈、三角胶和胎体帘布层的轮廓

由*P*₁₅坐标与*R*_b可确定钢丝圈的轮廓,由*P*₁₆向 钢丝圈引出两条切线即可确定三角胶的轮廓,如 图7所示。

图7 钢丝圈与三角胶的轮廓

胎体帘布层轮廓如图8所示。其中 P_{34} 与 P_{14} 以 直线连接, P_{34} 与 P_{33} 以圆弧连接,该圆弧与钢丝圈的 圆心相同(为 P_{15})。

H25与V25的计算式为

$$\begin{cases} H_{25} = 0\\ V_{25} = \frac{R}{2} - T_{\rm v} + T_{\rm i} + T_{\rm c} \end{cases}$$
(40)

从图8可以看出, H₂₆与H₉相同,则H₂₆与V₂₆的 计算式为

$$\begin{cases} H_{26} = C_1 C_3 \left(\frac{W}{2} - T_h\right) \\ V_{26} = C_4 M_2 + \frac{R + R_r}{4} + C_2 M_1 + T_i + T_c \end{cases}$$

$$H_{27} = V_{27}$$
bit 第式为 (41)

图8 胎体帘布层轮廓

$$\begin{cases} H_{27} = C_8 \left(\frac{W}{2} - T_h\right) + T_i + T_c \\ V_{27} = \frac{R + R_r}{4} + C_9 M_i + T_i + T_c \end{cases}$$
(42)

$$\begin{cases} H_{28} = \frac{W}{2} - T_{\rm h} - C_{10}M_3 + T_{\rm i} + 1.5T_{\rm c} \\ V_{28} = \frac{R + R_{\rm r}}{4} + C_{11}M_4 \end{cases}$$
(43)

H29与V29的计算式为

$$\begin{cases} H_{29} = \frac{W}{2} - T_{\rm h} + T_{\rm i} + 2T_{\rm c} \\ V_{29} = \frac{R + R_{\rm r}}{4} \end{cases}$$
(44)

H30与V30的计算式为

$$\begin{cases} H_{30} = \frac{WW_{\rm r}}{2} - M_8 + D_{\rm ah} - M_9 + \\ C_{22}M_{21} + T_{\rm i} + 2T_{\rm c} \\ V_{30} = \frac{R + R_{\rm r}}{4} - C_{21}M_{20} \end{cases}$$
(45)

H31与V31的计算式为

$$\begin{cases} H_{31} = \frac{WW_{r}}{2} - M_{8} + D_{ah} + M_{10} - T_{hh} \\ V_{31} = \frac{R_{r}}{2} + M_{7} + D_{av} + M_{10} \end{cases}$$

$$(46)$$

H32与V32的计算式为

令

$$\begin{cases} H_{32} = \frac{WW_{\rm r}}{2} + C_{18}M_{17} - T_{\rm hh} \\ V_{32} = \frac{R_{\rm r}}{2} + M_7 + C_{19}M_{18} \end{cases}$$
(47)

H33与V33的计算式为

$$\begin{cases} H_{33} = \frac{WW_r}{2} - T_{hh} \\ V_{33} = \frac{R_r}{2} + M_7 \end{cases}$$
(48)

H₃₄与V₃₄的计算式为

$$\begin{cases} H_{34} = \frac{WW_r}{2} - M_5 + T_i \\ V_{34} = \frac{R_r}{2} + M_7 \end{cases}$$
(49)

4 带束层、增强层与胎面的轮廓

4.1 带束层

带束层的轮廓由2段圆弧构成,其中, P_{25} , P_{26} , P_{27} 点构成第1段圆弧, P_{35} , P_{36} , P_{37} 点构成第2段圆 弧,如图9所示,其中, P_{27} 与 P_{37} 以直线相连。确定6 个点坐标即可确定轮胎带束层的轮廓,方法如下。

图9 带束层的轮廓

令 $T_{z1} = T_i + T_c + T_b$ (50) $H_{35} = V_{35}$ 的计算式为

$$\begin{cases} H_{35} = 0\\ V_{35} = \frac{R}{2} - T_{\rm v} + T_{\rm z1} \end{cases}$$
(51)

H₃₆与V₃₆的计算式为

$$\begin{cases} H_{36} = C_1 C_3 \left(\frac{W}{2} - T_h\right) \\ V_{36} = C_4 M_2 + \frac{R + R_r}{4} + C_2 M_1 + T_{z1} \end{cases}$$
(52)

H37与V37的计算式为

$$\begin{cases} H_{37} = C_8 \left(\frac{W}{2} - T_h\right) + T_i + T_c \\ V_{37} = \frac{R + R_r}{4} + C_9 M_1 + T_{z1} \end{cases}$$
(53)

4.2 增强层与胎面

增强层的轮廓由2段圆弧构成,其中,P35,

*P*₃₆, *P*₃₇点构成第1段圆弧, *P*₃₈, *P*₃₉, *P*₄₀点构成第
2段圆弧,如图10所示,其中, *P*₃₇和*P*₄₀以直线相
连。确定6个点坐标即可确定增强层与胎面的轮廓,方法如下。

图10 增强层与胎面的轮廓

$$T_{z_2} = T_i + T_c + T_b + T_p$$
(54)
H₂₀与V₂₀的计算式为

$$\begin{cases} H_{38} = 0\\ V_{38} = \frac{R}{2} - T_{\rm v} + T_{\rm z2} \end{cases}$$
(55)

H39与V39的计算式为

$$\begin{cases} H_{39} = C_1 C_3 \left(\frac{W}{2} - T_h\right) \\ V_{39} = C_4 M_2 + \frac{R + R_r}{4} + C_2 M_1 + T_{z2} \end{cases}$$
(56)

H40与V40的计算式为

$$\begin{cases} H_{40} = C_8 \left(\frac{W}{2} - T_h\right) + T_i + T_c \\ V_{40} = \frac{R + R_r}{4} + C_9 M_1 + T_{z2} \end{cases}$$
(57)

由 P_3 , P_5 , P_2 构成的圆弧与 P_{38} , P_{39} , P_{40} 构成的 圆弧的交点为 P_{41} , P_{40} 与 P_{41} 构成分割线将胎面与胎 侧区分为两个区域。

5 帘线设计

轮胎的帘线通常分为胎体帘线、带束层帘线 与增强层帘线,分别位于胎体帘布层、带束层与增 强层。由于轮胎帘布是多层贴合在一起的,即帘 线应等距分布于所属区域,依据该特点可分别在 胎体帘布层、带束层与增强层建立表示帘线的几 何模型。帘线在轮胎中的位置如图11所示,从上 至下依次对应增强层帘线、带束层帘线与胎体帘 线。由39个参数建立的轮胎截面如图12所示。

本工作开发了SuperTire软件(界面见图13), 采用GDI绘图引擎,使用上述方法,实现了轮胎几 何参数化的绘图建模。SuperTire软件分为前处理

图13 自主开发的航空轮胎设计工业软件SuperTire界面 模块和后处理模块,可以计算含有帘线的轮胎的充气 分析、接地印痕分析、温度场分析以及接触分析等。

6 结语

本工作针对轮胎结构提出一种几何参数化 的建模方法。该方法使用参数39个(描述轮胎几 何信息的参数16个,调整轮胎几何轮廓的参数23 个),通过建立轮胎截面外轮廓,钢丝圈、三角胶和 胎体帘布层的轮廓,带束层、增强层与胎面的轮廓 和帘线设计,可以精确建立航空子午线轮胎二维 截面的几何模型,从而加速轮胎结构建模。

参考文献:

- [1] 佟伟. 子午线航空轮胎技术研究[D]. 青岛:青岛科技大学, 2021.
- [2] 周海超,李慧云,夏琦,等. 辐条式免充气轮胎的减振分析[J]. 橡胶 工业,2022,69(2):91-96.
- [3] 吴桂忠.高性能子午线轮胎研发、生产和试验研究概况及发展 趋势[J].中国橡胶,2022,38(2):17-26.
- [4] 王伟斌. 子午线轮胎胎圈疲劳寿命预测及结构优化[D]. 镇江: 江苏 大学, 2021.
- [5] 王泽鹏,高峰,粟定华,等. 斜交轮胎三维有限元建模方法[J]. 轮胎 工业,2007,27(7):394-398.
- [6] 洪圣康. 轮胎有限元分析自动化建模与处理系统[D]. 镇江:江苏大学,2019.
- [7] KONDE A K, ROSU I, LEBON F, et al. On the modeling of aircraft tire[J]. Aerospace Science and Technology, 2013, 27 (1):67–75.
- [8] 吴长辉,李红卫,田健,等.基于参数化设计的轮胎自动化建模研究[J].橡胶科技,2019,17(4):202-205.
- [9] 哈斯巴根,朱凌,石琴,等.轮胎有限元建模过程优化及刚度特性 仿真研究[J]. 合肥工业大学学报(自然科学版),2015,38(7):944-948.
- [10] 张方亮, 董玉德, 刘彦超, 等. 基于CATIA的轮胎花纹建模工具的 开发[J]. 轮胎工业, 2018, 38 (11):651-654.

收稿日期:2023-03-02

Development of Geometrical Parametric Modeling Method for Aircraft Radial Tire

SHI Yubiao, JIN Jinxin, ZHAO Cunwei, ZUO Wenjie (Jilin University, Changchun 130022, China)

Abstract: A geometric parametric modeling method for the structure of 1270×455 R22 aircraft radial tire was proposed. This method used 39 parameters in which 16 parameters were applied to describe the general geometric information of the tire and the other 23 parameters were for the detailed description of the contour profile of the tire. The results showed that an accurate two-dimensional geometric model of the section of the aircraft radial tire was successfully obtained by establishing the contour profile of the outer section, constructing the contour profiles of various parts such as the bead, apex, carcass cord, belt layer, reinforcement layer, and tread, and refining the cord design. This method could be applied to accelerate the modeling of tire structure.

Key words: aircraft radial tire; geometrical model; parameter; contour