半有效硫化体系在 NR 内胎配方中的应用

陈 勇,贾世伟,刘广伟,杨开玉

(桦林轮胎股份有限公司,黑龙江 牡丹江 157032)

摘要:研究了半有效硫化体系在 NR 内胎配方中的应用效果。试验结果表明,与采用常规硫黄硫化体系的原生产配方相比,采用半有效硫化体系的试验配方胶料的拉伸强度和 300 %定伸应力有所降低,扯断永久变形和热拉伸变形减小,耐热老化性能和耐疲劳性能提高;挤出的半成品表面光滑,挺性提高,硫化后成品外观良好。

关键词:半有效硫化体系:NR:内胎

中图分类号: TQ330. 38 + 5; TQ336. 1 + 2 文献标识码:B 文章编号: 1006-8171 (2002) 03-0161-02

传统的 NR 内胎配方采用常规硫黄硫化体系,硫化胶以多硫键为主。多硫键的活动性较强,应力易分散,因而硫化胶的拉伸性能较好,但耐热性较差,变形较大,不利于内胎的实际使用。本工作研究了半有效硫化体系在 NR 内胎配方中的应用效果。

1 实验

1.1 原材料

NR,3[#] 烟 胶 片,泰 国 产 品; SBR,牌号 SBR1500,中国石油吉林化工集团公司产品;其它 原材料均为轮胎生产常用原材料。

1.2 基本配方

试验配方为: NR 70; SBR 30; 硫黄 0.75;促进剂 CZ 1.25;促进剂 DM 0.5;促进剂 TM TD 0.45;氧化锌 5;硬脂酸 2;防老剂 3.5;炭黑 49;其它 9.5。

原生产配方为: NR 70; SBR 30; 硫黄 1.8; 促进剂 CZ 0.65; 促进剂 DM 0.65; 促进剂 D 0.3; 氧化锌 5; 硬脂酸 2; 防老剂 3.5; 炭黑 49; 其它 9.5。

1.3 试验设备与仪器

Instron 4301 型电子拉力试验机,英国产品; 900 mm ×900 mm 三层平板硫化机和 XK·160 型

作者简介:陈勇(1973-),男,黑龙江齐齐哈尔人,桦林轮胎股份有限公司助理工程师,学士,主要从事橡胶配方设计与工艺管理工作。

开炼机,上海橡胶机械一厂产品; XM-140/20型 密炼机,大连冰山橡塑股份有限公司产品; R-100型硫化仪,美国孟山都公司产品。

1.4 胶料制备

小配合试验在 XK-160 型开炼机上进行,大配合试验在 XM-140/20 型密炼机上进行。

1.5 性能测试

胶料性能按相应的国家标准进行测试。

2 结果与讨论

2.1 小配合试验

小配合试验结果见表 1。从表 1 可见,与原生产配方相比,试验配方胶料的拉伸强度和300%定伸应力降低,扯断永久变形和热拉伸变形明显减小,而耐热老化性能和耐疲劳性能提高。

常规硫黄硫化体系以多硫键交联为主,用于NR内胎配方时,硫化胶中多硫键约占70%,双硫键约占30%,单硫键几乎没有。多硫键不稳定,容易发生变化,因而硫化胶的耐热老化性能较差。半有效硫化体系以单硫键和双硫键交联为主,单硫键十分稳定,因而硫化胶的耐热老化性能和耐疲劳性能较好,且优于常规硫黄硫化体系。

2.2 车间大料试验

大配合试验结果见表 2。由表 2 可见,胶料 大配合试验结果与小配合试验结果基本吻合。

2.3 成品试验

取原生产配方和试验配方生产的9.00-20 内胎各一条进行定期解剖全项试验,其物理性能

表 1 小配合试验结果

项 目		试验配方		原生产配方							
硫化仪数据(145)											
$M_{\rm L}/({\rm N}\cdot{\rm m})$		0.53		0.51							
$M_{\rm H}/({\rm N}\cdot{\rm m})$		3.05		3.37							
t ₁₀ / min		6. 15		5.45							
t ₉₀ / min		11.04		11.47							
硫化时间(144)/min		10	20	10	20						
拉伸强度/ MPa		24.5	24. 1	25.7	24.3						
扯断伸长率/%		680	637	647	605						
300 %定伸应力/ MPa		6.4	6.8	7.6	8.7						
扯断永久变形/%		14.3	14.2	30.0	29.5						
热拉伸变形[(105 ±2)	×										
5 h]/ %		_	12		19						
100 ×48 h 老化后											
拉伸强度/ MPa		_	19.8	_	16.5						
扯断伸长率/%		_	507	_	373						
疲劳断裂时间/ min			11.8		0.8						

表 2 大配合试验结果

	\HU	7			
项 目		试验配方		原生产配方	
硫化仪数据(145)					
$M_{\rm L}/~({\rm N}~{\rm \cdot m})$		0.63		0.63	
$M_{\rm H}/({\rm N}\cdot{\rm m})$		3.11		3.59	
t ₁₀ / min		7.30		6.46	
t ₉₀ / min		13.30		12.26	
硫化时间(144)/min		10	20	10	20
拉伸强度/ MPa	2	23.0	21.8	24.8	23.2
扯断伸长率/%		673	627	667	567
300 %定伸应力/ MPa		5.9	6.7	8.1	9.7
扯断永久变形/%	1	16.0	12.7	29.8	22.7
热拉伸变形[(105 ±2)	×				
5 h]/ %		_	15.0	_	19.6
100 x 48 h 老化后					
拉伸强度/ MPa		_	17.6	_	16.1
扯断伸长率/%		_	485	_	388
疲劳断裂时间/ min		_	13.8		1.0

测试结果见表 3。

从表 3 可以看出,与原生产配方相比,试验配方胶料的扯断永久变形和热拉伸变形减小,耐热性有所提高,拉伸强度和 300 %定伸应力略有降

低,与胶料大、小配合试验结果一致。

2.4 批量试制

根据试验结果,选择性能较好的配方进行7 天的生产试制,以进一步考察其工艺性能。

在试制期间,炼胶、挤出、接头和硫化等工艺性能正常,反映良好。

2.5 工艺性能

在 XM-140/20 型密炼机上采用与原生产配 方相同的操作规程,混炼电流波动正常,过滤温度 为 120~130 ,试验配方混炼胶的表面光滑,端面细密。

与原生产配方相比,采用试验配方挤出的 9.00-20 内胎半成品表面光滑、挺性有所提高, 硫化后成品外观良好。

3 结论

在 NR 内胎配方中应用半有效硫化体系可以减小内胎变形,提高耐热性和耐疲劳性能,但拉伸性能略有降低;可满足生产工艺要求,挤出的9.00-20内胎半成品表面光滑、挺性提高,硫化后成品外观良好。

表 3 内胎成品物理性能

项 目	试验配方	原生产配方
拉伸强度/ MPa	22.4	23.3
扯断伸长率/%	645	613
300 %定伸应力/ MPa	6. 1	7.7
扯断永久变形/%	16.8	29.8
撕裂强度/ (kN·m ⁻¹)	96	94
回弹值/%	43	45
热拉伸变形[(105 ±2) ×		
5 h]/ %	17.0	22.0
接头拉伸强度/ MPa	17. 1	16.0
接头扯断伸长率/%	593	521
邵尔 A 型硬度/ 度	54	56

收稿日期:2001-09-08

川橡召开第 14 届 QC 成果发布会

中图分类号:F270.3 文献标识码:D

四川川橡集团有限公司于 2001 年 12 月 23 日召开了第 14 届 QC 成果发布会,共发布生产现场型成果 10 项,综合管理型成果 7 项,创直接经济效益 232.86 万元。

本次 QC 成果中《减少胎趾圆角质量缺陷,提高轮胎综合合格率》攻关项目,使轮胎综合合格率由99.27%上升为99.75%,创直接经济效益22.32万元。

(四川川橡集团有限公司 王小可 刘成玉供稿)